
CHAPTER III

CONFORMANCE TESTING METHODOLOGIES

1. INTRODUCTION

Currently, the main issue in protocol conformance testing that requires further research is combining the
efforts in three major fields: formal description techniques (FDTs), formal test generation techniques and
the conformance testing standards. These fields address the same problems in the area of communication
protocols, namely assuring that products are implemented correctly and they will interoperate and deliver
specified services to the users. Unfortunately, in the reported results, there are gaps to be filled, and
inconsistencies to be resolved in some cases. This is primarily due to the trade-off between the ease of
implementation and effectiveness in testing. It is well established that defining a complex protocol as a
collection of relatively small communicating modules is preferable. However, if not designed carefully,
formal specifications written as a set of communicating modules (or processes) may result in
implementations with unpredictable external behavior; in this case, unpredictable behavior may cause
insufficiencies in service delivery and make thorough testing almost impossible. In this chapter, we
make an attempt to identify some of the problems regarding a formidable task: assimilation of various
results in the fields of test generation techniques, formal description techniques and conformance testing
standards.

In Section 2, we discuss the techniques for generating conformance tests in detail; the techniques that are
reported in the literature can be classified into four major groups. The first technique is called the
transition tour method as outlined by Sarikaya and Bochmann in Some Experience with Test Sequence
Generation for Protocols. An input sequence (called a transition tour) is applied to an implementation to
check whether the state transitions are implemented correctly. In X.25 Conformance Testing − A
Tutorial, Sherif et al. applied the transition tour method to the X.25 Data-Link and Network Layer
protocols. In Optimal Test Sequence Generation for Protocols: The Chinese Postman Algorithm Applied
to Q.931, Uyar and Dahbura introduce an optimization technique to minimize the length of the tour
based on the graph theoretic concept called the Chinese postman problem. The second technique is
called the distinguishing sequences method where the state of an implementation is identified by
applying a set inputs and analyzing the outputs. Hennie introduced this method in his paper titled Fault
Detecting Experiments for Sequential Circuits. Gönenç brings an algorithmic approach to the
distinguishing sequences method in A Method for the Design of Fault Detection Experiments. In Using
Checking Sequences for OSI Session Layer Conformance Testing, Hengeveld and Kroon report a case
study that applies this method to generate test sequences for Session Layer protocol. For protocols that
do not have distinguishing sequences, the characterizing sequences method can be used to identify the
current state of an implementation. This method is discussed in Chow’s paper titled Testing Software
Design Modeled by Finite-State Machines. Fujiwara et al. propose a technique in Test Selection on Finite
State Machines to shorten the final test sequence obtained by this method. The last method, called the
unique input/output sequences, was developed by Sabnani and Dahbura is presented in A Protocol Test
Generation Procedure. Compared to the distinguishing and characterizing sequences methods the
unique input/output sequences method requires significantly fewer restrictions on protocol specifications
than most techniques. Aho et al. apply the optimization technique introduced by Uyar and Dahbura into
the unique input/output sequences method and present an algorithm to minimize the length of the test
sequence in An Optimization Technique for Protocol Conformance Test Generation Based on UIO
Sequences and Rural Chinese Postman Tours. This technique uses a more general form of the Chinese
postman problem, called the rural Chinese postman problem. Miller and Paul present an enhancement
for the unique input/output sequences method in Generating Minimal Test Length Test Sequences for
Conformance Testing of Communication Protocols. In the last paper of this section, titled Fault

III.1

Coverage of Protocol Test Methods, Sidhu and Leung present a study to assess the relative fault coverage
of the above four test generation techniques.

The techniques described in Section 2 are primarily applicable to protocols that are specified as finite
state machines (FSMs) which were defined in Chapter I. These techniques can be readily used to
generate tests for the control flow portion of a protocol (e.g., establishing, maintaining and clearing
connections). In Section 3, we briefly discuss testing the data portion of a protocol (e.g., once a
connection is established, testing to assure that the information conveyed among entities over the
connection and interactions between the input parameter values, context variables and output parameters
are satisfactory). The analysis of testing the data portion of a protocol is not as precise as the control
flow portion − partly because the results reported in the literature are applicable to special cases of
extended FSM (EFSM) and FDT specifications (as opposed to general solutions), and partly because the
topic is currently an open research problem. Synchronization issues discussed in Section 7 of Chapter II
are not revisited here. Note that the same concerns regarding the synchronization of various entities in a
test system remain valid for test generation aspects of the conformance testing problem.

In Section 3, we discuss applicability of the FSM-based models to the specifications that are defined by
using EFSMs and FDTs. Algorithmic test generation methods can be used for the specifications based
on EFSMs or FDTs provided that the specifications satisfy certain conditions such as avoiding
spontaneous state transitions and transient states, and making the parameters and internal variables
controllable. In general, this subject is an open research problem and test generation techniques are not
necessarily readily utilizable at this point. However, we believe that the techniques that are discussed in
Section 2 present a good starting point for further research. We discuss the advancements in test
generation for FDT-based specifications which are described in TESDL: Experience with Generating Test
Cases from DSL Specifications by Brömstrup and Hogrefe for SDL, in LOTOS Specifications, Their
Implementations and Their Tests by Brinksma et al. for LOTOS, and in A Test Design Methodology for
Protocol Testing by Sarikaya et al. for Estelle. In Derivation of Test Cases for LAP-B from a LOTOS
Specification, Gueraichi and Logrippo give a case study for applying the unique input/output sequences
technique to a certain class of specifications written in LOTOS. As a complementary study to those
reported in this chapter, we also include the test generation techniques based on software engineering
which are described by Ural in A Test Derivation Method For Protocol Conformance Testing.

In Section 4, we discuss the relationship between the principles defined by the conformance testing
standard [1], which were briefly presented in Section 2 of Chapter II, and conformance test generation
techniques: test purposes, abstract test cases and test methods are among the concepts that are evaluated
in terms of conformance test generation techniques.

Section 5 summarizes the chapter, and Section 6 discusses some of the open research problems and gives
references for further reading.

2. Algorithmic Procedures for Conformance Testing

In this section, we discuss the methodologies reported in the literature which bring algorithmic solutions
to the conformance testing problem. In Section 2.1, we define conformance testing from the viewpoint
of algorithmic procedures by introducing two important concepts, called controllability and
observability. Four major techniques, called transition tours method, distinguishing sequences method,
characterizing sequences method and unique input/output sequences method are discussed in Sections
2.2, 2.3, 2.4 and 2.5, respectively. In Section 2.6, we present a study addressing the fault coverage of
these methods.

Note that the four techniques considered in this section assume that a directed graph representation of a
protocol specification is strongly-connected. Recall from Section 4.1 in Chapter I that a directed graph is
called strongly-connected if there is a path from any vertex to any other vertex. This property
corresponds to protocol specifications (not implementations!) that do not have any deadlocks. We hav e
to state the difference, however, the protocol specifications that consist of single or multiple
communicating entities. For the latter case, the fact that all communicating entities have strongly-
connected specifications does not guarantee that the global specification obtained by combining them is
free of deadlocks; the communication among the entities may easily cause a deadlock such as waiting for

III.2

a message that will never arrive. In this case, a verification of the specification is needed. The scope of
this book is limited to single entity (i.e., single finite state machine) specifications.

2.1. Conformance Testing Problem

The purpose of conformance testing is to check whether an implementation of a protocol behaves in
accordance with its specification. Conformance testing is classified as a black-box approach if an
external tester can only observe the outputs generated by the implementation upon receipt of inputs (as
opposed to the tester having information about the internal design of an implementation). Since the
black-box approach was introduced previously, we analyze this approach from a different point of view −
conformance test generation.

Various techniques are available to make black-box testing more effective and efficient. They are
classified into four major techniques: transition tours, distinguishing sequences, characterizing
sequences and unique input/output sequences. Before we discuss each technique, let us define the
purpose of testing a state transition of an FSM in more detail.

Recall that we denote a state transition from state si to s j which is caused by an inputk and generates
outputl by:

(si , s j ; inputk /outputl)

Given an implementation of an FSM, referred to as an implementation under test (IUT), there are three
steps to test whether this state transition is realized correctly:

Step I: Bring the IUT into state si .

Step II:Apply the input called inputk and observe that the IUT generates the output called
outputl .

Step III:Verify that the final state of the IUT is s j .

In the remainder of this chapter, we will refer to the above three steps as the basic test procedure. In
general, the above steps of the basic test procedure are not trivial to realize for a given FSM
implementation for two reasons: limitations on the controllability and the observability of the IUT.
Throughout this chapter, we will use the same example FSM specification of PhoneDTE presented in
Chapter I, which is replicated in Figure 3.1 for your ease of reference.

III.3

s6

s5

s4

s3

s2

s1

s0

N.Prog/U.Announce

N.Prog/U.Announce

N.Disc/U.StopCon

N.Con/U.ConAck

N.Alert/U.RingBack

U.Digit/N.Info

U.Digit/U.InfoToneOff

N.SetupAck/U.DialTone

U.ConReq/N.Setup

U.ClearReq/N.Null

N.Disc/U.StopRingBack

U.ClearReq/N.Disc

U.ClearReq/N.Disc

U.ClearReq/N.Disc

U.ClearReq/N.Disc

U.ClearReq/N.Disc

Figure 3.1. PhoneDTE specification as a directed graph.

III.4

Due to the limited controllability of an implementation, it is not possible to bring the implementation
into state si in Step I of the above procedure without realizing several transitions. For example, for an
implementation of the PhoneDTE specification, the tester has to apply three inputs to move the
implementation from state s0 to s3, namely the inputs of U.ConReq, N.SetupAck, and U.Digit. The test
sequence has to take advantage of the fact that once an implementation is brought into a particular state,
as many aspects as possible should be tested without returning to the initial state. In complex real-life
protocols, this task (i.e., to decide what to test next, once the implementation is in a given state) becomes
very difficult. Unless an efficient solution is found to overcome this difficulty, the number of inputs
required to test every specified edge of a real-life protocol may require an unacceptably large number of
inputs, and consequently, the time required to realize such tests in a test laboratory may be prohibitively
long.

Due to the limited observability of an implementation, in Step III of the basic test procedure, it is
typically not possible to directly verify that the implementation is in state s j . For example, in Figure 3.1,
consider the state transitions from s1 to s2 to s0 realized by sending to the implementation the inputs of
N.SetupAck and U.ClearReq and observing the outputs of U.DialTone and N.Disc, respectively. There is
no way of knowing that the implementation actually makes these state transitions by only observing the
outputs. Suppose an implementation error caused the FSM to stay in state s1 after N.SetupAck is applied
(instead of moving to state s2 for the above example); in this case, the implementation would have
generated the same output N.Disc when U.ClearReq is applied (since both s1 and s2 behave the same
way for the input of U.ClearReq). Because of this implementation error, a tester would have mistakenly
concluded that s1 to s2 state transition is implemented correctly, although it has not. Therefore, the issue
of verifying that a state transition to a final state actually occurred is critical for improving the
effectiveness of a test in terms of the ability to identify implementation errors.

All conformance test generation techniques that are reported in the literature try to present solutions to
the observability and the controllability issues in testing. In the remainder of this section, we discuss
four major techniques briefly and describe how each one addresses (or fails to address) these two issues.

2.2. Transition Tour Method

The transition tour method is the most straight-forward approach for conformance test generation. The
state transitions defined in a protocol specification are exercised at least once by applying an input
sequence to an implementation, starting from the initial state of the FSM. Such an input sequence is
called a transition tour of the FSM. Recall from Section 4.1 of Chapter I that a tour in a directed graph
is defined as a sequence of consecutive edges that starts and ends at the same vertex. Traditionally, the
vertex corresponding to the initial state of an FSM is considered as the starting and ending vertex of a
transition tour. In a transition tour, traversing an edge corresponds to sending the input defined for that
edge to an IUT and observing the output generated by the IUT. Therefore, a sequence of edges in a
transition tour is interpreted as exercising the inputs and outputs of an IUT in various states.

The transition tour method was first suggested by Naito et al. [2] for FSM-based representations of fully-
specified, strongly-connected sequential circuits by a heuristic algorithm. The transition tour approach is
first applied to the area of protocol conformance testing by Sarikaya and Bochmann in Some Experience
with Test Sequence Generation for Protocols. The authors introduce the method as "the simplest
approach" compared to other methods and apply the technique to Transport Layer protocol. The
transition tour method, which is applicable to partially-specified protocols (as described by Sarikaya and
Bochmann), has the major disadvantage that Step III of the basic test procedure defined in Section 2.1 is
not part of the technique. In other words, the state verification step is omitted, severely limiting the fault
detection capability of the technique.

In X.25 Conformance Testing − A Tutorial, Sherif et al. present one of the early applications of the
transition tour method to X.25 Data-Link and Network Layer protocols. The specifications of these
protocols are represented in a state transition table form, which are derived from the English text given in
the standard. Although the new state verification step is not addressed, this paper was among the first to
point out that conformance tests can be structured as valid, invalid and inopportune tests, thereby
provided support from industry to the development of the conformance testing standards.

III.5

Uyar and Dahbura applied the transition tour approach to a certain class of protocols that have a special
feature, called the "status feature." In a protocol specification with the status feature, there is a special
input message defined in every protocol state, called status_inquiry; applying status_inquiry to an
implementation generates an output that reports the current state of the implementation and the
implementation stays in the same state. Formally stated, a protocol specification with the status feature
has a state transition defined for every state si such that

(si , si ; status_inquiry / report_si)

Note that the names and formats of actual input and output messages may be different for a particular
protocol. In their paper titled Optimal Test Sequence Generation for Protocols: The Chinese Postman
Algorithm Applied to Q.931, the authors incorporate Step III of the basic test procedure into the
transition tour method by applying a status_inquiry input after traversing each new edge, therefore,
verifying the new state of the implementation. In this case, the basic test procedure defined in Section
2.1 to test a state transition specified as (si , s j ; inputk / outputl) becomes:

Step I: Bring the implementation into state si .

Step II:Apply the input called inputk and observe that the implementation generates the output
called outputl .

Step III:Apply status_inquiry to the implementation and observe that the output is report_s j .

Uyar and Dahbura also showed that the length of the transition tour can be minimized by using the graph
theoretic concept called the Chinese postman problem [3], where a postman is required to deliver the
mail to every street of a town in such a way that the postman walks through each street a minimum
number of times (the streets and the intersections of streets correspond to edges and vertices of a graph,
respectively). For directed graphs, the Chinese postman problem is defined as finding a minimum-cost
tour of the graph such that every edge of the graph is traversed at least once. Each edge of the graph is
associated with an integer cost value representing the time and difficulty to realize the input and output
operations of that edge. For example, an edge that represents an expiry of a long timer will have a higher
cost value than an edge requiring a simple input and output. If all the edges of a graph have the same
cost value, the minimum-cost tour that covers every edge corresponds to a minimum-length tour. The
authors give an efficient algorithm for generating a minimum-cost transition tour of a protocol
specification and apply the technique to ISDN Network Layer protocol, called Q.931 (see the paper for
details).

Using this technique, a minimum-cost transition tour for PhoneDTE specification is given in Figure 3.2.
We assumed that all edges defined for PhoneDTE has the same cost value, therefore, the tour is of
minimum-length. Note that in the tour of Figure 3.2 Step III of the basic test procedure (i.e., verification
of new state) for each state transition test is omitted.

TEST SEQUENCE TABLE

STEP CURRENT NEXT MSG TO MSG FROM
STATE STATE IUT IUT

1<-- s0 s1 U.ConReq N.Setup
2<-- s1 s2 N.SetupAck U.DialTone
3<-- s2 s6 N.Prog U.Announce
4<-- s6 s0 U.ClearReq N.Null
5 s0 s1 U.ConReq N.Setup
6 s1 s2 N.SetupAck U.DialTone
7<-- s2 s3 U.Digit U.InfoToneOff
8<-- s3 s3 U.Digit N.Info
9<-- s3 s4 N.Alert U.RingBack
10<-- s4 s5 N.Con U.ConAck
11<-- s5 s6 N.Disc U.StopCon

III.6

TEST SEQUENCE TABLE

STEP CURRENT NEXT MSG TO MSG FROM
STATE STATE IUT IUT

12 s6 s0 U.ClearReq N.Null
13 s0 s1 U.ConReq N.Setup
14 s1 s2 N.SetupAck U.DialTone
15 s2 s3 U.Digit U.InfoToneOff
16<-- s3 s6 N.Prog U.Announce
17 s6 s0 U.ClearReq N.Null
18 s0 s1 U.ConReq N.Setup
19 s1 s2 N.SetupAck U.DialTone
20 s2 s3 U.Digit U.InfoToneOff
21 s3 s4 N.Alert U.RingBack
22<-- s4 s6 N.Disc U.StopRingBack
23 s6 s0 U.ClearReq N.Null
24 s0 s1 U.ConReq N.Setup
25 s1 s2 N.SetupAck U.DialTone
26 s2 s3 U.Digit U.InfoToneOff
27 s3 s4 N.Alert U.RingBack
28 s4 s5 N.Con U.ConAck
29<-- s5 s0 U.ClearReq N.Disc
30 s0 s1 U.ConReq N.Setup
31 s1 s2 N.SetupAck U.DialTone
32 s2 s3 U.Digit U.InfoToneOff
33 s3 s4 N.Alert U.RingBack
34<-- s4 s0 U.ClearReq N.Disc
35 s0 s1 U.ConReq N.Setup
36 s1 s2 N.SetupAck U.DialTone
37 s2 s3 U.Digit U.InfoToneOff
38<-- s3 s0 U.ClearReq N.Disc
39 s0 s1 U.ConReq N.Setup
40<-- s1 s0 U.ClearReq N.Disc

Figure 3.2. A minimum-length transition tour for PhoneDTE specification given in Figure 3.1. (New

state verification for each state transition test is omitted.)

In Figure 3.2, the columns called MSG TO IUT and MSG FROM IUT represent the input message sent to

the IUT and the expected output message generated by the IUT, respectively. The current and expected

next state of the IUT are shown in the columns labeled as CURRENT STATE and NEXT STATE,

respectively. During conformance testing, the inputs are applied to an IUT in the order denoted by the

column called STEP. If the response of an IUT is not what is expected at any step of the tour, an error is

detected in the implementation. In Figure 3.2, a step marked by an arrow "<--" indicates that a state

transition denoted as (si , s j ; inputk / outputl) is being tested at that step. For example, in Step 1, the

state transition defined as (s0, s1 ; U . ConReq / N . Setup) is being tested. The steps that are not marked

represent the intermediate steps to bring the IUT into a state where a state transition is to be tested. For

example, Steps 12 through 15 are used to bring the IUT from state s6 to state s3 where

N.Prog/U.Announce is to be tested.

III.7

Now, suppose the specification of Figure 3.1 has the status feature defined as

(si , si ; N . Status/N . Report_si) for each state si . For example, state s0 of Figure 3.1 would include a

permissible input called N . Status which would generate an output called N . Report_s0 and the FSM

would stay in state s0. In this case, every new edge to be tested can include a new state verification by

using the status feature. Note that the status feature messages also need to be tested. A minimum-length

test sequence is given in Figure 3.3. (We assumed that every state transition of PhoneDTE has the same

cost value.)

TEST SEQUENCE TABLE

STEP CURRENT NEXT MSG TO MSG FROM
STATE STATE IUT IUT

1<-- s0 s0 N.Status N.Report_s0
2 s0 s0 N.Status N.Report_s0
3<-- s0 s1 U.ConReq N.Setup
4 s1 s1 N.Status N.Report_s1
5<-- s1 s1 N.Status N.Report_s1
6 s1 s1 N.Status N.Report_s1
7<-- s1 s2 N.SetupAck U.DialTone
8 s2 s2 N.Status N.Report_s2
9<-- s2 s2 N.Status N.Report_s2
10 s2 s2 N.Status N.Report_s2
11<-- s2 s3 U.Digit U.InfoToneOff
12 s3 s3 N.Status N.Report_s3
13<-- s3 s3 N.Status N.Report_s3
14 s3 s3 N.Status N.Report_s3
15<-- s3 s3 U.Digit N.Info
16 s3 s3 N.Status N.Report_s3
17<-- s3 s4 N.Alert U.RingBack
18 s4 s4 N.Status N.Report_s4
19<-- s4 s4 N.Status N.Report_s4
20 s4 s4 N.Status N.Report_s4
21<-- s4 s5 N.Con U.ConAck
22 s5 s5 N.Status N.Report_s5
23<-- s5 s5 N.Status N.Report_s5
24 s5 s5 N.Status N.Report_s5
25<-- s5 s6 N.Disc U.StopCon
26 s6 s6 N.Status N.Report_s6
27<-- s6 s6 N.Status N.Report_s6
28 s6 s6 N.Status N.Report_s6

29 s6 s0 U.ClearReq N.Null
30 s0 s1 U.ConReq N.Setup
31 s1 s2 N.SetupAck U.DialTone

32<-- s2 s6 N.Prog U.Announce
33 s6 s6 N.Status N.Report_s6

34 s6 s0 U.ClearReq N.Null
35 s0 s1 U.ConReq N.Setup
36 s1 s2 N.SetupAck U.DialTone
37 s2 s3 U.Digit U.InfoToneOff

III.8

TEST SEQUENCE TABLE

STEP CURRENT NEXT MSG TO MSG FROM
STATE STATE IUT IUT

38<-- s3 s6 N.Prog U.Announce
39 s6 s6 N.Status N.Report_s6

40 s6 s0 U.ClearReq N.Null
41 s0 s1 U.ConReq N.Setup
42 s1 s2 N.SetupAck U.DialTone
43 s2 s3 U.Digit U.InfoToneOff
44 s3 s4 N.Alert U.RingBack

45<-- s4 s6 N.Disc U.StopRingBack
46 s6 s6 N.Status N.Report_s6
47<-- s6 s0 U.ClearReq N.Null
48 s0 s0 N.Status N.Report_s0

49 s0 s1 U.ConReq N.Setup
50 s1 s2 N.SetupAck U.DialTone
51 s2 s3 U.Digit U.InfoToneOff
52 s3 s4 N.Alert U.RingBack
53 s4 s5 N.Con U.ConAck

54<-- s5 s0 U.ClearReq N.Disc
55 s0 s0 N.Status N.Report_s0

56 s0 s1 U.ConReq N.Setup
57 s1 s2 N.SetupAck U.DialTone
58 s2 s3 U.Digit U.InfoToneOff
59 s3 s4 N.Alert U.RingBack

60<-- s4 s0 U.ClearReq N.Disc
61 s0 s0 N.Status N.Report_s0

62 s0 s1 U.ConReq N.Setup
63 s1 s2 N.SetupAck U.DialTone
64 s2 s3 U.Digit U.InfoToneOff

65<-- s3 s0 U.ClearReq N.Disc
66 s0 s0 N.Status N.Report_s0

67 s0 s1 U.ConReq N.Setup
68 s1 s2 N.SetupAck U.DialTone

69<-- s2 s0 U.ClearReq N.Disc
70 s0 s0 N.Status N.Report_s0

71 s0 s1 U.ConReq N.Setup

72<-- s1 s0 U.ClearReq N.Disc
73 s0 s0 N.Status N.Report_s0

Figure 3.3. A minimum-length transition tour for PhoneDTE specification with the status feature.

(New state verification is included for each state transition test.)

III.9

The notation used in the test sequence of Figure 3.3 is similar to the one in Figure 3.2. The test sequence

is applied to an IUT in the order given by the STEP column. A step marked by an arrow "<--" indicates

that a state transition is being tested. However, each state transition test of Figure 3.3 consists of two

steps: the step that is marked by an arrow, and the step following it for verification of the new state. For

example, at Steps 17 and 18, the state transition from s3 to s4 defined as N.Alert/U.RingBack is being

tested. At the first step an input is applied to the IUT and the output is observed (i.e., Step II of the basic

test procedure given in Section 3.1) as shown at Step 17 where N.Alert is sent to the IUT and U.RingBack

is expected. The second step is the verification of the new state of the IUT (i.e., Step III of the basic test

procedure) as given in Step 18 where the expected state of an IUT is verified as s4 by sending N.Status to

the IUT and expecting N.Report_ s4 as response.

Note that the test sequence of Figure 3.3 also checks the correctness of the status feature

implementation. For example, Steps 1 and 2 test the implementation of N.Status/N.Report_ s0 at state s0;

similarly, Steps 5 and 6 test N.Status/N.Report_ s1 at state s1.

2.3. Distinguishing Sequences Method

A distinguishing sequence of an FSM is an input sequence which generates an output sequence that

identifies the state of an implementation before the input sequence is applied. In other words, when a

distinguishing sequence is applied to an FSM implementation that is originally in state si , the output

sequence generated by the implementation is different for each state si .

Distinguishing sequences were originally developed by researchers for testing sequential digital circuits

(see for example [4],[5]). The so-called checking experiments (i.e., a sequence of input signals) are

applied to a digital circuit to obtain information about the operation of an implementation, such as the

state that the implementation is in before or after the experiment is started, or its operation is error-free,

etc.

In his 1964 paper, titled Fault Detecting Experiments for Sequential Circuits, Hennie defines the

fundamental concepts in checking experiments including the definitions of the synchronizing, homing

and distinguishing sequences.

A synchronizing sequence of an FSM is an input sequence that, when applied to an implementation of

the FSM, leaves the implementation in a certain state, independent of the state that the implementation

was before the synchronizing sequence is applied. A homing sequence of an FSM is an input sequence

that determines the final state of an implementation by observing the output sequence generated. For

example, the input called U.ClearReq is a synchronizing sequence for the PhoneDTE specification given

in Figure 3.1. This input is also a homing sequence since the output (either N.Disc or N.Null) determines

that the final state is s0. Applying the input of U . ClearReq moves an implementation into state s0

regardless of the output generated by the implementation (which can be either N . Disc or N . Null,

III.10

depending on the state of an implementation). Also, every distinguishing sequence is a homing

sequence, however, the converse is not true. Typically, a distinguishing sequence of an FSM

specification is much longer than the homing and the synchronizing sequence of the specification since it

provides more information about the FSM implementation than the latter two. For more details about

checking experiments, the reader is referred to the studies by Kohavi [4] and Bhattacharyya [5].

A distinguishing sequence can uniquely identify the state of an implementation, and, therefore, can be

used to realize Step III of the basic test procedure. For each state transition defined as

(si , s j ; inputk / outputl) the basic test procedure defined in Section 2.1 becomes:

Step I: Bring the implementation into state si . Using the terminology defined by Hennie and

Kohavi [4], this step can be expanded as follows:

I.a: Apply the synchronizing sequence to bring the implementation into the initial

state.

I.b: Apply the transfer sequence for si to bring the implementation from initial state

into a si .

Step II:Apply the input called inputk and observe that the implementation generates the output called

outputl .

Step III:Apply the distinguishing sequence for s j and verify that the new state after Step II was indeed s j .

One of the earlier and frequently referenced studies on distinguishing sequences is reported by Gönenç in

A Method for the Design of Fault Detection Experiments. Gönenç brings an algorithmic approach to

apply the distinguishing sequences method to test sequential machine implementations. There are

algorithms in the paper to generate so-called α − and β − sequences. A test sequence which tests that the

states are implemented correctly (regardless of the state transitions) is called an α − sequence. The test

designer should know how many states are implemented in an FSM-based design (which may be equal to

or larger than the number of states defined in the specification), and test the existence of each state by

using the α -sequences. The state transitions of an implementation is tested by a β − sequence. Note

that, for black-box testing of communication protocols, α -sequences do not have a practical use. The

information about the details of an implementation (i.e., the number of states that are implemented) is

simply unavailable to the test designer. Therefore, a test designer can only assume that the number of

states that an implementation has equal to the number of states that are defined in the FSM specification.

As a consequence, use of the β -sequences is sufficient for the protocol conformance testing (or, more

realistically speaking, has to be sufficient).

One of the rare applications of the distinguishing sequences method is reported in Using Checking

Sequences for OSI Session Layer Conformance Testing by Hengeveld and Kroon, where they apply this

method to the OSI Session Layer protocol. The specification is defined within the standard in the form

III.11

of a state transition table. However, there are some variables used in the state transition table whose

values influence the next state and the output; therefore, the specification is an EFSM. The paper gives

step-by-step description of the process of converting the specification from the EFSM to FSM form. An

interesting application of test effectiveness techniques from hardware testing (such as "stuck-at" faults)

are applied to the resulting test sequences.

Although the distinguishing sequences method can be a useful tool for realizing the state verification step

of the basic test procedure, there are several drawbacks that may limit the applicability of this method to

many real-life protocols. As mentioned above, the distinguishing sequences method is originally

introduced for sequential digital circuits that are fully-specified. However, communication protocol

specifications are typically partially-specified since it may not be physically possible to generate every

input at every state. Hence, most real-life protocols do not posses a distinguishing sequence.

Furthermore, the length of a distinguishing sequence becomes a severe limitation for running the tests in

a test laboratory since the length is in the order of nn+1 for an FSM with n-states. We should note that a

distinguishing sequence may exist even for specifications that are not fully-specified. It is the algorithms

reported in the literature that require this constraint.

For illustration, let us try to apply the distinguishing sequences method to the specification PhoneDTE

given in Figure 3.1. Assume that a telephone corresponding to the PhoneDTE specification is the

implementation to be tested. One can see from the specification of PhoneDTE that it does not have a

distinguishing sequence since there is no input which is permissible at every state of the specification.

Also note that not every real-life protocol can be fully-specified. Suppose the input called U.ConReq

corresponds to picking up the handset before dialing. It is clear that this input can only be generated in

the protocol states where the telephone handset is hung up (only in s0 in Figure 3.1), but not in other

states.

However, for the sake of illustrating the concept of distinguishing sequences, let us assume that

PhoneDTE is fully-specified, where every unspecified input in Figure 3.1 is replaced with an input that

generates an N.Null output and the FSM stays in its current state. Figure 3.4 gives the state transition

table for this fully-specified version of PhoneDTE specification.

III.12

N.Null
(s0)

N.Null
(s0)

N.Null
(s0)

N.Null
(s0)

N.Null
(s0)

N.Null
(s0)

N.Null
(s0)

N.Null
(s1)

N.Null
(s1)

N.Null
(s1)

N.Null
(s1)

N.Null
(s1)

N.Null
(s1)

N.Null
(s2)

N.Null
(s2)

N.Null
(s2)

N.Null
(s2)

N.Null
(s2)

N.Null
(s3)

N.Null
(s3)

N.Null
(s3)

N.Null
(s3)

N.Null
(s4)

N.Null
(s4)

N.Null
(s4)

N.Null
(s4)

N.Null
(s4)

N.Null
(s5)

N.Null
(s5)

N.Null
(s5)

N.Null
(s5)

N.Null
(s5)

N.Null
(s5)

N.Null
(s6)

N.Null
(s6)

N.Null
(s6)

N.Null
(s6)

N.Null
(s6)

N.Null
(s6)

N.Null
(s6)

U.Info
(s3)s3

s4

s5

s6

U.Con
Req

N.Setup
Ack

U.Digit N.Alert N.Con

U.RingBack
(s4)

N.ProgN.Disc

U.StopCon
(s6)

U.Stop
RingBack

(s6)

U.ConAck
(s5)

U.Clear
Req

N.Setup
(s1)

states

inputs

s0

s1

N.Disc
(s0)

N.Disc
(s0)

U.Announce
(s6)

U.Announce
(s6)

N.Disc
(s0)

N.Disc
(s0)

N.Disc
(s0)

N.Null
(s0)

s2

U.DialTone
(s2)

U.Info
ToneOff

(s3)

Figure 3.4. State transition table for the fully-specified

version of PhoneDTE specification given in Figure 3.1.

In the directed graph representation of PhoneDTE, this specification change corresponds to adding a self-

loop for each unspecified input at every state as follows:

(si , si; unspecified_input j / N . Null)

For example, in vertex s3 of Figure 3.1, there are a total of 4 self-loops defined as:

(s3, s3 ; U . ConReq / N . Null)

(s3, s3 ; N . SetupAck / N . Null)

(s3, s3 ; N . Con / N . Null)

(s3, s3 ; N . Disc / N . Null)

In this modified specification, a distinguishing sequence called DS can be found as:

DS = U.ConReq, N.SetupAck, U.Digit, N.Alert, N.Con, N.Disc, U.ClearReq

The outputs generated by a correct implementation as response to this distinguishing sequence is

different for each state as shown in Figure 3.5.

III.13

setup, dialtone, info_tone_off, ringback, hear, stop_hearing, null

null, dialtone, info_tone_off, ringback, hear, stop_hearing, null

null, null, info_tone_off, ringback, hear, stop_hearing, null

null, null, info, ringback, hear, stop_hearing, null

null, null, null, null, hear, stop_hearing, null

null, null, null, null, null, stop_hearing, null

null, null, null, null, null, null, null

s0

s1

s2

s3

s4

s5

s6

states
DS=con_req,setupack,digit,alert,conn,disc,clear_req

Outputs generated by

Figure 3.5. Output sequence generated as response to the DS

at each state by the modified PhoneDTE given in Figure 3.4.

Let us apply the distinguishing sequence method to the modified specification of PhoneDTE (Figure 3.4)

by using the above distinguishing sequence. The transfer sequences for each state are:

T(s0) = empty sequence

T(s1) = U.ConReq

T(s2) = U.ConReq, N.SetupAck

T(s3) = U.ConReq, N.SetupAck, U.Digit

T(s4) = U.ConReq, N.SetupAck, U.Digit, N.Alert

T(s5) = U.ConReq, N.SetupAck, U.Digit, N.Alert, N.Con

T(s6) = U.ConReq, N.SetupAck, N.Prog.

A synchronizing sequence S is U.ClearReq.

In this case, the test sequence for testing the state transitions defined for state s2 is given in Figure 3.6.

The tests for the remaining states can be generated similarly.

III.14

TEST SEQUENCE TABLE

STEP CURRENT NEXT MSG TO MSG FROM
STATE STATE IUT IUT

Apply S:
1 s0 s0 U.ClearReq N.Null

Apply T(s2):
2 s0 s1 U.ConReq N.Setup
3 s1 s2 N.SetupAck U.DialTone

Test edge:
4<-- s2 s2 U.ConReq N.Null

Apply DS:
5 s2 s2 U.ConReq N.Null
6 s2 s2 N.SetupAck N.Null
7 s2 s3 U.Digit U.InfoToneOff
8 s3 s4 N.Alert U.RingBack
9 s4 s5 N.Con U.ConAck
10 s5 s6 N.Disc U.StopCon
11 s6 s0 U.ClearReq N.Null

Apply S:
12 s0 s0 U.ClearReq N.Null

Apply T(s2):
13 s0 s1 U.ConReq N.Setup
14 s1 s2 N.SetupAck U.DialTone

Test edge:
15<-- s2 s2 N.SetupAck N.Null

Apply DS:
16 s2 s2 U.ConReq N.Null
17 s2 s2 N.SetupAck N.Null
18 s2 s3 U.Digit U.InfoToneOff
19 s3 s4 N.Alert U.RingBack
20 s4 s5 N.Con U.ConAck
21 s5 s6 N.Disc U.StopCon
22 s6 s0 U.ClearReq N.Null

Apply S:
23 s0 s0 U.ClearReq N.Null

Apply T(s2):
24 s0 s1 U.ConReq N.Setup
25 s1 s2 N.SetupAck U.DialTone

Test edge:
26<-- s2 s3 U.Digit U.InfoToneOff

Apply DS:
27 s3 s3 U.ConReq N.Null
28 s3 s3 N.SetupAck N.Null
29 s3 s3 U.Digit N.Null
30 s3 s4 N.Alert U.RingBack
31 s4 s5 N.Con U.ConAck
32 s5 s6 N.Disc U.StopCon
33 s6 s0 U.ClearReq N.Null

Apply S:
34 s0 s0 U.ClearReq N.Null

Apply T(s2):
35 s0 s1 U.ConReq N.Setup
36 s1 s2 N.SetupAck U.DialTone

Test edge:
37<-- s2 s2 N.Alert N.Null

Apply DS:

III.15

TEST SEQUENCE TABLE

STEP CURRENT NEXT MSG TO MSG FROM
STATE STATE IUT IUT

38 s2 s2 U.ConReq N.Null
39 s2 s2 N.SetupAck N.Null
40 s2 s3 U.Digit U.InfoToneOff
41 s3 s4 N.Alert U.RingBack
42 s4 s5 N.Con U.ConAck
43 s5 s6 N.Disc U.StopCon
44 s6 s0 U.ClearReq N.Null

Apply S:
45 s0 s0 U.ClearReq N.Null

Apply T(s2):
46 s0 s1 U.ConReq N.Setup
47 s1 s2 N.SetupAck U.DialTone

Test edge:
48<-- s2 s2 N.Con N.Null

Apply DS:
49 s2 s2 U.ConReq N.Null
50 s2 s2 N.SetupAck N.Null
51 s2 s3 U.Digit U.InfoToneOff
52 s3 s4 N.Alert U.RingBack
53 s4 s5 N.Con U.ConAck
54 s5 s6 N.Disc U.StopCon
55 s6 s0 U.ClearReq N.Null

Apply S:
56 s0 s0 U.ClearReq N.Null

Apply T(s2):
57 s0 s1 U.ConReq N.Setup
58 s1 s2 N.SetupAck U.DialTone

Test edge:
59<-- s2 s2 N.Disc N.Null

Apply DS:
60 s2 s2 U.ConReq N.Null
61 s2 s2 N.SetupAck N.Null
62 s2 s3 U.Digit U.InfoToneOff
63 s3 s4 N.Alert U.RingBack
64 s4 s5 N.Con U.ConAck
65 s5 s6 N.Disc U.StopCon
66 s6 s0 U.ClearReq N.Null

Apply S:
67 s0 s0 U.ClearReq N.Null

Apply T(s2):
68 s0 s1 U.ConReq N.Setup
69 s1 s2 N.SetupAck U.DialTone

Test edge:
70<-- s2 s0 U.ClearReq N.Disc

Apply DS:
71 s0 s1 U.ConReq N.Setup
72 s1 s2 N.SetupAck U.DialTone
73 s2 s3 U.Digit U.InfoToneOff
74 s3 s4 N.Alert U.RingBack
75 s4 s5 N.Con U.ConAck
76 s5 s6 N.Disc U.StopCon
77 s6 s0 U.ClearReq N.Null

Apply S:

III.16

TEST SEQUENCE TABLE

STEP CURRENT NEXT MSG TO MSG FROM
STATE STATE IUT IUT

78 s0 s0 U.ClearReq N.Null
Apply T(s2):

79 s0 s1 U.ConReq N.Setup
80 s1 s2 N.SetupAck U.DialTone

Test edge:
81<-- s2 s2 N.Prog N.Null

Apply DS:
82 s2 s2 U.ConReq N.Null
83 s2 s2 N.SetupAck N.Null
84 s2 s3 U.Digit U.InfoToneOff
85 s3 s4 N.Alert U.RingBack
86 s4 s5 N.Con U.ConAck
87 s5 s6 N.Disc U.StopCon
88 s6 s0 U.ClearReq N.Null

Figure 3.6. Test sequence generated by the distinguishing sequences method for the state

transitions defined for state s2 of modified PhoneDTE specification given in Figure 3.4.

The format used in the test sequence table given in Figure 3.6 is similar to the one used in Figure 3.2.

Before testing each state transition, the synchronizing sequence is applied to the implementation (for

example, in Steps 1, 12, 23, in Figure 3.6) followed by the transfer sequence T (s2) to bring the

implementation into state s2 (for example, in Steps 2 and 3 in Figure 3.6). Then the input/output

operation to be tested is performed, marked by an arrow "<--" in Figure 3.6. Finally, the distinguishing

sequence is applied to the implementation to verify that the state transition to be tested moved the

implementation into the correct state (for example, Steps 5 through 11 in Figure 3.6). During testing, the

implementation must generate the outputs as expected, otherwise an error is detected.

The test sequences for the state transitions defined for the remaining states can be generated similarly.

The length of the test sequence for the specification of Figure 3.5 is more than 500. Note that some of

the sequences can be overlapped to shorten the final test sequence, however, the length of the test

sequence still remains too long for most real-life protocols. For example, the synchronizing sequence

chosen for the above example (i.e., U . ClearReq) happens to be included in the DS as the last

input/output operation. In the test sequence of Figure 3.6, the FSM implementation should be in state s0

after the DS is applied; therefore, the synchronizing sequence can be omitted in this case, and Steps 11

and 12, 22 and 23, etc. can be merged.

2.4. Characterizing Sequences Method

The characterizing sequences method was introduced for the FSM specifications that are fully-specified

but do not posses a distinguishing sequence [4][5]. A characterizing set of a state si is a set of input

sequences such that, when each sequence is applied to the implementation at state si , the set of output

III.17

sequences generated by the implementation uniquely identifies state si . Each sequence of the

characterizing set of state si distinguishes state si from a group of states (i.e., acts like a partial

distinguishing sequence). Therefore, applying all of the sequences in the characterizing set distinguishes

state si from all other states.

For an FSM-based specification, a set that consists of characterizing sets of every state is called the

characterizing set of the FSM. The sequences of the characterizing set of an FSM specification is called

the characterizing sequences of the FSM. The characterizing sequences method is also referred to as

W-method since, as discussed below, Chow calls the characterizing set as the "W − set" in Testing

Software Design Modeled by Finite-State Machines.

We cannot use the PhoneDTE example of Figure 3.1 to illustrate the application of the characterizing

sequences method to the protocol conformance testing, since the FSM specification is not fully-specified.

The modified version of this FSM as given in Figure 3.4 has a distinguishing sequence, therefore, we

cannot use the modified version either. Instead, let us consider the example FSM specification given in

Figure 3.7 which is fully-specified and does not have a distinguishing sequence (as illustrated by Kohavi

[4]).

a/y

a/y

b/yb/y

b/y

b/y

a/x

a/x
s3

s2s1

s0

Figure 3.7. An FSM specification that does not posses

a distinguishing sequence (initial state is s0).

A W − set for this FSM specification can be constructed by using the so-called multiple-experiment as

defined by Kohavi [4]. Consider the input sequence called W1 = a, b, a. The output sequences

generated by applying W1 for each state of the above FSM is shown in Figure 3.8.

III.18

W1 = a, b, a

s0

s1

s2

x, y, x

y, y, y

y, y, x

x, y, xs3

starting
states

Outputs generated by

Figure 3.8. Output sequences generated by

the FSM of Figure 3.7 as response to W1.

The output sequence generated by W1 can identify whether the state of an implementation was either s1

or s2 before W1 is applied, since the outputs for s1 and s2 are unique (as shown in Figure 3.8, the output

sequences are y,y,y and y,y,x, respectively). However, W1 cannot distinguish the state of an

implementation if the FSM was initially at either s0 or s3 (the output sequence is x,y,x for both states as

can be seen in Figure 3.8). Now, let us examine the response of implementation to the input sequence

called W2 = b, a for each state (Figure 3.9).

W2 = b, a
by

s0

s1

s2

y, x

y, x

y, y

y, ys3

states
starting

Outputs generated

Figure 3.9. Output sequences generated by

the FSM of Figure 3.7 as response to W2.

III.19

The FSM implementation generates distinct output sequences as response to W2 for the cases where the

implementation was initially at s0 and s3 as given in Figure 3.9 (the output sequences are y,x and y,y,

respectively). Therefore, the characterizing set for the FSM specification of Figure 3.7 consists of two

input sequences: W = { W1 , W2 }

A method to apply the characterizing sequences to designs that can be modeled as FSMs is reported in

Chow’s paper. Chow defines two sets of sequences, called P − and W − sets. P − set includes all paths

required to reach every state (i.e., input sequences that start from the initial state of the FSM and bring it

into each state). In other words, P − set corresponds to the transfer sequences defined by Kohavi [4] and

Bhattacharyya [5], and W − set is the characterizing set of the FSM. Chow puts a special emphasis for

estimating the number of states that an implementation contains. Recall that the number states in an

implementation may be equal to or larger than the number of states defined in the specification; a W − set

is called a Z − set if the implementation has extra states. Since the information that yields the number of

states of a protocol implementation is not available to the test designer, the number of states in an

implementation should be assumed to be the number of states defined in the specification. Any guesses

on what the number of states in an implementation may be does not have any practical base simply

because the implementation is a black-box.

The controllability problem that we discussed in Section 2.1 is addressed by introducing the partial paths

(i.e., P − set) in the characterizing sequences method, but the resulting test sequence is potentially too

long for most real-life protocols. W − set is primarily designed to solve the observability problem. The

main advantage of this method is that every minimal and fully-specified FSM specification (see Section

4.1 in Chapter I for definitions) has a W − set. This makes the characterizing sequences an alternative

method if a specification does not have a distinguishing sequence. However, by definition, every

distinguishing sequence is a characterizing sequence. Therefore, the disadvantages of the distinguishing

sequences method are inherent in the characterizing sequences. First, many real-life protocols do not

possess distinguishing sequences (partly because they are not always fully-specified). Second, the length

of the final test sequence is large. In addition, since there is a set of input sequences to be applied to

verify the state of an implementation (as opposed to a single distinguishing sequence), the test sequences

generated by the characterizing sequences method are typically much longer than those generated by the

distinguishing sequences.

At this point, we refer back to a paper cited in Chapter I titled A Useful FSM Representation For Test

Suite Design and Development by Kanungo et al. In addition to giving an example of using state

transition tables as the form of protocol specification, this paper also presents a case study for

constructing the partial paths (i.e., P-set) defined in the characterizing sequences method. The protocol

that the authors considered is called LAP-B, a Data-Link Layer protocol. The tests that are derived from

the specification of LAP-B are presented by using the standardized TTCN graphic syntax (i.e., tables).

III.20

Applying the characterizing sequences method, the basic test procedure for testing a state transition

(si , s j ; inputk / outputl) becomes:

Repeat the following procedure for each input sequence of W − set:

Step I:Bring the implementation into state si . Similar to the case of distinguishing sequences, this

step can be expanded as follows:

I.a: Apply the synchronizing sequence.

I.b: Apply the transfer sequence for si .

Step II:Apply the input called inputk and observe that the implementation generates the output

called outputl .

Step III:Apply an input sequence from W − set and verify that the output sequence is as expected.

For the example of Figure 3.7, the test sequence generated by characterizing sequences method is as

follows:

Transfer sequences: T(s1) = b, b; T(s2) = b, a; T(s3) = b

A synchronizing sequence is S = b, a, b, a, b, a

Characterizing set: W − set = {W1 , W2 }, where W1 = a, b, a and W2 = b, a .

In this case, the input sequence for testing the state transitions defined for state s3 is given in Figure 3.10.

TEST SEQUENCE TABLE

STEP CURRENT NEXT MSG TO MSG FROM
STATE STATE IUT IUT

Apply T (s3)
1 s0 s3 b y

Test edge:
2<-- s3 s0 a x

Apply W1
3 s0 s0 a x
4 s0 s3 b y
5 s3 s0 a x

Apply S
6 s0 s3 b y
7 s3 s0 a x
8 s0 s3 b y
9 s3 s0 a x
10 s0 s3 b y
11 s3 s0 a x

Apply T (s3)
12 s0 s3 b y

Test edge:
13<-- s3 s0 a x

Apply W2

III.21

TEST SEQUENCE TABLE

STEP CURRENT NEXT MSG TO MSG FROM
STATE STATE IUT IUT

14 s0 s3 b y
15 s3 s0 a x

Apply S
16 s0 s3 b y
17 s3 s0 a x
18 s0 s3 b y
19 s3 s0 a x
20 s0 s3 b y
21 s3 s0 a x

Apply T (s3)
22 s0 s3 b y

Test edge:
23<-- s3 s1 b y

Apply W1
24 s1 s2 a y
25 s2 s2 b y
26 s2 s1 a y

Apply S
27 s1 s0 b y
28 s0 s0 a x
29 s0 s3 b y
30 s3 s0 a x
31 s0 s3 b y
32 s3 s0 a x

Apply T (s3)
33 s0 s3 b y

Test edge:
34<-- s3 s1 b y

Apply W2
35 s1 s0 b y
36 s0 s0 a x

Figure 3.10. Test sequence obtained by the W-method for the state transitions

defined for state s3 of the FSM given in Figure 3.7.

In Figure 3.10, we use the same format as in Figure 3.2. In order to test the state transitions defined for

state s3 of the FSM specification of Figure 3.7, the tester first applies a transfer sequence (assuming that

the implementation is initially at state s0) to bring the implementation into state s3 (for example, in Step

1 of Figure 3.10). Then the state transition to be tested at state s3 is performed, which is denoted by an

arrow "-->" in Figure 3.10. W1 is applied to check the state of the implementation (for example, Steps 3,

4 and 5 in Figure 3.10). At this point, the state transition is only partially tested since W1 is not enough

to identify the state of an implementation. The synchronizing sequence (for example, Steps 6 through

11) followed by the transfer sequence of s3 are then applied to bring the implementation into the initial

state and into state s3, respectively. The test is repeated for the same edge by using W2. If all outputs

received from the implementation are as defined by the specification, the state transition test is completed

successfully.

III.22

The remaining state transitions of the FSM specification are tested in a similar manner. Note that the

total length of the test sequence for the simple example specification of Figure 3.7 exceeds 140

input/output operations.

In Test Selection Based on Finite State Models, Fujiwara et al. gives a version of W -method, called the

"partial W-method" where the length of the total test sequence is shortened. The authors propose the

savings in the final test length by shortening the W − set. The inputs are excluded from the W − set if

they are not generating different outputs at different states (hence they are not giving any useful

information).

2.5. Unique Input/Output Sequences Method

A unique input/output (UIO) sequence for a state si is an input sequence such that its output sequence

uniquely identifies state si . In a giv en FSM specification with n states, there are at least n UIO

sequences, one for each specified state (some states may have more than one UIO sequence) if the

specification is strongly-connected and minimal (see the formal definitions in Section 2 of Chapter I).

Before discussing the UIO sequences method, let us consider the main difference between the UIO

sequences and the distinguishing and the characterizing sequences. Although the goal of the

distinguishing, characterizing and UIO sequences methods is to address the observability problem in

testing (by identifying the current state of an implementation), the UIO sequences method approaches the

problem from a fundamentally different perspective.

During Step III of the basic test procedure for a state transition of (si , s j ; inputk / outputl), the

distinguishing and the characterizing sequences methods identify the new state of the implementation

without using the knowledge that the new state is expected to be s j . On the other hand, the UIO

sequences method takes advantage of the fact that the expected state of the implementation (i.e., state s j)

is known by the test designer. From the conformance testing point of view, during Step III of the basic

test procedure, all a test designer needs to know is whether the new state of the implementation is s j .

The UIO sequences are designed such that they can only identify that the new state is the one expected.

If an implementation is not in the expected state, this method does not give any further information about

the state of the implementation, other than declaring the test verdict as fail. However, in the cases of the

distinguishing and the characterizing sequences methods, test designer knows the new state of the

implementation − expected or not.

The UIO sequences technique was introduced by Sabnani and Dahbura in A Protocol Test Generation

Procedure where the authors show that every minimal FSM specification has UIO sequences for each

state defined in the specification (at least one UIO sequence per state). For example, the UIO sequence

of state s2 of the specification PhoneDTE of Figure 3.1 is U . Digit/U . InfoToneOff . We can verify from

the PhoneDTE specification that no other state generates the output of U . InfoToneOff as response to

III.23

input U . Digit, but only state s2. Therefore, to verify that an implementation is in state s2, tester applies

the UIO sequence of state s2 to the implementation. If the output is U . InfoToneOff , it is concluded that

the implementation was in state s2 before the UIO sequence is applied. As noted earlier, if the

implementation generates a different output, tester cannot know what the state of the implementation was

and declares the test as a fail. The UIO sequences for the states of PhoneDTE are given in Figure 3.11.

U.ClearReq/N.Nulls6

s5

s4

s3

s2

s1

s0

starting
state UIO sequences

U.ConReq/N.Setup

N.SetupAck/U.DialTone

U.Digit/U.InfoToneOff

U.Digit/N.Info

N.Con/U.ConAck

N.Disc/U.StopCon

Figure 3.11. UIO sequences for
the PhoneDTE specification of Figure 3.1.

By using the UIO sequences method, the basic test procedure for testing a state transition

implementation specified as (si , s j ; inputk / outputl) becomes:

Step I:Bring the implementation into state si .

Step II:Apply the input called inputk and observe that the implementation generates the output called

outputl .

Step III:Apply the UIO sequence of state s j and verify that the output sequence is as expected.

The UIO sequences approach, as opposed to the distinguishing and characterizing sequences methods,

does not require a fully-specified protocol specification. It also results in much shorter sequences since

only a specific state information is provided. The main disadvantage is that tester does not know the

state of the implementation in case of a failed test.

Aho et al. introduced an optimization technique to minimize the length of the test sequence in An

III.24

Optimization Technique for Protocol Conformance Test Generation Based on UIO Sequences and Rural

Chinese Postman Tours. This technique, based on the approach introduced by Uyar and Dahbura, uses

the graph theoretic concept called the rural Chinese postman problem − a more general form of the

Chinese postman problem, where the postman is required to deliver the mail to only certain streets in a

town which have mail-boxes (as opposed to every street) by walking through each street with a mail-box

a minimum number of times. This approach is adopted to protocol conformance testing by modeling a

specification as a directed graph with two different sets of edges: one set representing the original state

transitions defined for by specification (optional edges) and the other set representing the combination of

the original edges and the UIO sequences (mandatory edges). In this case, a rural Chinese postman tour

traverses every mandatory edge of the graph with the minimum cost (cost is an integer value associated

with each edge as defined in the Chinese postman problem).

As reported by Aho et al., the rural Chinese postman algorithm is applicable to specifications that satisfy

two sufficient, but not necessary, conditions: the specification has at least one self-loop (see Section 4.1

in Chapter I) defined for every state, and the so-called reset feature. The reset feature is defined in the

paper as an input/output operation defined for every state (not necessarily with the same input or output

message) that brings the protocol into its initial state. A minimum-length test sequence for the

PhoneDTE specification of Figure 3.1 generated by using the rural Chinese postman algorithm and the

UIO sequences of Figure 3.11 is shown in Figure 3.12. The format of the test sequence is the same as in

Figure 3.3. The steps where a state transition is tested are marked by arrows. Each state transition test

consists of two consecutive steps. The first one corresponds to sending and receiving the input and

output messages, and the second verifying the new state of the implementation. For example, in Figure

3.12, Steps 11 and 12 test the state transition of (s4, s5 ; N . Con / U . ConAck). At Step 11, the tester

sends N.Con to the implementation and expects U.ConAck as response. After Step 11, the

implementation is expected to be in state s5, which is verified at Step 12 by applying the UIO sequence

of s5 to the implementation (i.e., N.Disc/U.StopCon from Figure 3.11).

TEST SEQUENCE TABLE

STEP CURRENT NEXT MSG TO MSG FROM
STATE STATE IUT IUT

1 <-- s0 s1 U.ConReq N.Setup
2 s1 s2 N.SetupAck U.DialTone
3 <-- s2 s0 U.ClearReq N.Disc
4 s0 s1 U.ConReq N.Setup
5 <-- s1 s0 U.ClearReq N.Disc
6 s0 s1 U.ConReq N.Setup
7 <-- s1 s2 N.SetupAck U.DialTone
8 s2 s3 U.Digit U.InfoToneOff
9 <-- s3 s3 U.Digit N.Info
10 s3 s4 N.Alert U.RingBack
11<-- s4 s5 N.Con U.ConAck

III.25

TEST SEQUENCE TABLE

STEP CURRENT NEXT MSG TO MSG FROM
STATE STATE IUT IUT

12 s5 s6 N.Disc U.StopCon
13<-- s6 s0 U.ClearReq N.Null
14 s0 s1 U.ConReq N.Setup

15 s1 s2 N.SetupAck U.DialTone

16<-- s2 s3 U.Digit U.InfoToneOff
17 s3 s4 N.Alert U.RingBack
18<-- s4 s6 N.Disc U.StopRingBack
19 s6 s0 U.ClearReq N.Null

20 s0 s1 U.ConReq N.Setup
21 s1 s2 N.SetupAck U.DialTone
22 s2 s3 U.Digit U.InfoToneOff

23<-- s3 s4 N.Alert U.RingBack
24 s4 s5 N.Con U.ConAck
25<-- s5 s6 N.Disc U.StopCon
26 s6 s0 U.ClearReq N.Null

27 s0 s1 U.ConReq N.Setup
28 s1 s2 N.SetupAck U.DialTone
29 s2 s3 U.Digit U.InfoToneOff

30<-- s3 s6 N.Prog U.Announce
31 s6 s0 U.ClearReq N.Null

32 s0 s1 U.ConReq N.Setup
33 s1 s2 N.SetupAck U.DialTone
34 s2 s3 U.Digit U.InfoToneOff
35 s3 s4 N.Alert U.RingBack
36 s4 s5 N.Con U.ConAck

37<-- s5 s0 U.ClearReq N.Disc
38 s0 s1 U.ConReq N.Setup

39 s1 s2 N.SetupAck U.DialTone
40 s2 s3 U.Digit U.InfoToneOff
41 s3 s4 N.Alert U.RingBack

42<-- s4 s0 U.ClearReq N.Disc
43 s0 s1 U.ConReq N.Setup

44 s1 s2 N.SetupAck U.DialTone
45 s2 s3 U.Digit U.InfoToneOff

46<-- s3 s0 U.ClearReq N.Disc
47 s0 s1 U.ConReq N.Setup

48 s1 s2 N.SetupAck U.DialTone

49<-- s2 s6 N.Prog U.Announce
50 s6 s0 U.ClearReq N.Null

III.26

Figure 3.12. A minimum-length test sequence for PhoneDTE by using

the rural Chinese postman tours and the UIO sequences of Figure 3.11.

There are recent developments on the UIO sequences method to further reduce the length of the test

sequences. For example, Shen et al. [6] show that if there is more than one UIO for a state, these

additional UIO sequences can be used to obtain test sequences shorter than obtained by the technique

given by Aho et al. (which generates minimum-cost tours by using a single UIO sequence per state).

Chen et al. [7] introduce a heuristic method to reduce the length of the test sequences by exploiting the

fact that the state transitions of a UIO sequence which implement Step 3 of the basic test procedure can

be also utilized (where possible) as Step 2 of the procedure. In other words, for a given set of state

transition tests, the input/output messages required in Steps 2 and 3 of the basic test procedure may

overlap for several state transition tests. The heuristic algorithm of Chen et al. tries to reduce the

possible redundancies in the final test sequence.

In Generating Minimal Length Test Sequences for Conformance Testing of Communication Protocols,

Miller and Paul further investigate the shortening of the test sequence length by combining several

techniques. They use multiple UIO sequences and segment overlapping to obatin a shorter final

sequence. Also, the computational complexity analysis of their heuristic is noteworthy.

The reader is encouraged to study these techniques since each enhancement is a step towards compacting

the length of test sequences, which is one of the major concerns in testing complex protocols with up to

thousands of features to test.

2.6. Overview of Test Generation Techniques:

In Chapter I, we identified several aspects of the problem of testing implementations for their

conformance to their specifications. Even our simplistic calculator example (Section 2 of Chapter I) is

enough to point out the difficulties of this problem. When there are several different techniques for

conformance test generation a question that naturally comes to mind is whether one technique is better

than another. Defining effectiveness of each technique (at least relative to each another), however,

requires the formidable task of defining a model for fault coverage.

Several studies are reported in the literature addressing the fault coverage of the various test generation

techniques. In Fault Coverage of Protocol Test Methods, Sidhu and Leung present a fault model based

on Monte Carlo simulation technique for estimating the fault coverage of several test generation

methods. They note that a specification with n states, i inputs, and o outputs can have (n. o)(n.i) different

implementations; therefore, examining all such implementations is impossible. The authors introduce

ten different classes of randomly faulty specifications, each can be obtained by random alteration of a

given specification. For example, Class 1 faults consist of randomly altering an output operation in a

given specification. The transition tour, distinguishing, characterizing and UIO sequences methods are

III.27

compared for their ability to detect these ten classes of faulty specifications. For partially-specified

protocols, the authors conclude that all methods, except for the transition tour method, can detect all

single faults (as opposed to several faults) introduced in a given specification. It is also shown in the

paper that (however, without a formal proof) distinguishing, characterizing and UIO sequences methods

have the same fault detection capability. Another study, similar to the one by Sidhu and Leung, is

reported by Dahbura and Sabnani for the UIO sequences method [8].

Although we cannot give a widely-accepted model for measuring the fault coverage, we can at least

classify the formal test generation techniques discussed in Sections 2.2 through 2.5 based on their ability

to address the controllability and observability issues. Recall that the controllability issue deals with

bringing an IUT into the desired state where a test is to be conducted, whereas the observability issue is

the identification of the state of an IUT after a state transition takes place (i.e., Steps I and III of the basic

test procedure given in Section 2.1, respectively). In general, the transition tour approach mainly deals

with the controllability problem, unless the protocol has special status feature. The distinguishing,

characterizing and UIO sequences techniques address the observability issue. The optimization

techniques introduced by Uyar-Dahbura and Aho et al. try to close the gap between the observability and

controllability problems since they take into account both the state verification and the total length of the

test sequence.

3. Test Generation Based on Formal Description Techniques

Formal description techniques (FDTs) are defined by the standards organizations to achieve sev eral

goals: minimizing the ambiguities in protocol specifications, automating the implementation process,

and, consequently, automating the test generation for such specifications. Ideally, these goals promote

the fulfillment of several difficult tasks simultaneously:

- Formal specifications that are precise enough to be directly implemented can significantly simplify

the implementation (almost all FDTs have compilers to generate executable code).

- Products can be implemented by different manufacturers to achieve the principles of an Open

Systems Interconnection environment;

- Interoperability of products that are implemented by different manufacturers can be enhanced;

- Protocol engineers can meet the demands of versatile user services by specifying protocols as

complex as necessary (after all, they can be thoroughly tested);

Typically, the task of defining formal specifications that can be efficiently implemented requires that a

specification consists of a number of relatively small independent modules, each of which is easy to

implement, to modify and to test. These modules interact with each other to deliver the services defined

by the specification. However, if the specification is not designed cautiously, once such modules are

placed within a single implementation, the interactions among these modules can make the behavior of

III.28

the entire implementation uncontrollable and unobservable under certain conditions. Although

conformance testing uses the black-box approach (hence only the externally observable and controllable

behavior is testable), some portions of the protocol may not be testable despite the fact that they are

formally specified.

Another important issue regarding the specifications that are written in the form of several

communicating processes is to obtain the combined behavior of these processes. The global process that

represents the overall observable behavior of the specification may be extremely large (for some

constructs defined in the FDTs, infinitely large). The problem of verification of the correctness of a

specification (i.e., the absence of logical errors, deadlocks, livelocks, inconsistencies, etc.) can become

intractable for specifications using even moderately small number of communicating processes [9]-[14].

Therefore, when defining specifications, protocol engineers have to keep in mind the verification issue as

well as the testability.

The trade-off between the efficient implementation and effective testing is reflected in the respective

results that are reported in the literature. Often, the papers that address one aspect ignore the other. In

this section, we give examples of test generation methods based on the FDTs; we refrain from any

comparison of the results since most of the techniques are experimental and the general solution is an

open research problem at this point. We, howev er, encourage the reader to study the references given in

each paper for insightful information in this field.

The test generation techniques discussed in Section 2 are mainly targeted for the specifications that are

written in the form FSMs. These techniques can be also directly applicable to EFSMs and FDTs if

certain limitations are imposed on the specifications. The main issue is the potential loss of

controllability and observability of an implementation because of the use of EFSMs and FDTs, which

can make testing extremely difficult. The use of spontaneous transitions (i.e., the state transitions that

take place without external stimuli and, therefore, cannot be controlled externally by the tester) and

transient states (i.e., the states where an implementation stays only a relatively short amount of time and

moves to another state without an external stimulus) can make an implementation untestable.

Below, we discuss several papers regarding the test generation based on FDTs, all of which address the

difficulty of test generation based on the FDTs. Almost all the authors use limited versions of the current

FDTs to demonstrate the advances made towards a solution of automated testing of formal specifications.

More research is needed for a general solution to test implementations that are specified by using all

capabilities of the current FDTs. Recently, ISO and CCITT have accelerated their efforts by forming

study groups and committees on formal methods in conformance testing, which emphasizes the

importance and urgency of this problem.

In TESDL: Experience with Generating Test Cases from SDL Specifications, Brömstrup and Hogrefe

present a heuristic algorithm to derive the global behavior of a protocol as a tree, called an Asynchronous

III.29

Communication Tree (ACT), which is based on a restricted set of SDL diagrams. The ACT is the global

system description as obtained by reachability analysis by perturbation. In ACT, the nodes (i.e., vertices)

represent a global states of the protocol. A global state contains information about the states of all

processes in the specification. Tests are derived from the ACT of a specification by a software tool,

called TESDL.

A theory for defining the conformance testing for systems that are defined in LOTOS (or, in general,

labeled transition systems [15][16]) is given in LOTOS Specifications, Their Implementations and Their

Tests by Brinksma et al. The authors define a notion called a "canonical tester" which detects the

discrepancies between a given specification and its implementation. An algorithmic way to construct the

canonical testers is an open problem. This paper represents a formal framework for defining various

fundamental concepts in the field of conformance testing.

A more practical approach for LOTOS specifications can be found in Derivation of Test Cases for LAP-B

from a LOTOS Specification by Gueraichi and Logrippo. The paper reports a case study for applying the

UIO sequences method to a real-life protocol specification in LOTOS where a state-oriented approach is

used. The authors derive the "execution trees" from the LOTOS specification by removing the LOTOS

operators such as parallel composition and disable. The execution trees represent all possible execution

sequences, some of which may be invalid (e.g., they may have incompatible or conflicting variable

values). Resulting conformance tests for LAP-B (a Data-Link Layer protocol) are comparable to those

generated by state transition tables. Although the authors note that the test selection algorithm is based

on a heuristic and may not be feasible for more complex and detailed specifications, this paper is one of

the encouraging examples of the effort of combining a formal specification and test generation

techniques.

In A Test Design Methodology for Protocol Testing by Sarikaya et al., protocols specifications that are

defined in Estelle are considered. An Estelle specification is first translated into a normalized form where

procedure/function calls and conditional statements are replaced with equivalent with in-line code

constructs. Based on the normalized specification the control and data flow graphs are obtained. The

control graph represents the state changes based on input values and spontaneous transitions. The data

flow represents the relationships among the inputs, context variables, functions and outputs. Each node

(vertex) in the data flow graph represents either an input, variable, function or output, and the edges

correspond to the information flow among those nodes. The authors show that the control graph can be

tested by using various techniques that we discussed in Section 2 of this chapter. The data flow, on the

other hand, is first partitioned into a set of "blocks" each of which shows the flow for a single variable;

the blocks that are dependent (e.g., the variables that are related to the same inputs) are then merged into

larger blocks to shorten the test sequences. The resulting data flow graph can be tested by using the

techniques of Section 2 if the test designer can supply necessary parameter values for each path of the

III.30

data flow graph. A similar study for Estelle specifications also exists [17].

In A Test Derivation Method For Protocol Conformance Testing, Ural applies software engineering

techniques to protocol conformance testing. The technique that Ural describes is applicable to the

protocol specifications given in Estelle as a "normal form specification" (NFS), an easy-to-analyze,

single-module form of Estelle (see the paper for the formal definition of NFS). The NFS is similar to the

normalized form given in A Test Design Methodology for Protocol Testing by Sarikaya et al. The NFS of

a protocol is translated into a graph: the vertices are called s-, i-, and t-nodes representing the states,

inputs and the statement blocks of the NFS, respectively; the edges among these vertices are defined as

si-, it-, ts-, and st- edges. Covering all nodes, edges and paths of this graph correspond to statement,

branch and path coverage, respectively, as defined in software engineering. Test derivation technique

discussed in the paper is based on selecting the paths covering the variables used in predicates or

computational statements. Ural suggests that this method is a complementary to those discussed in

Section 2 and this section.

4. Application of Formal Test Generation Methods to OSI Standards

OSI conformance testing standards focus on the issues related to the various methods for conducting

conformance testing as outlined in Section 2 of Chapter II. The assumption of the standardization effort

is that the test designer has already developed a set of test purposes (usually by manual methods) to

perform on an IUT. On the other hand, formal techniques for test generation do not concentrate on the

issues regarding the realization of tests in a test laboratory. This section points out the applicability of

the concepts developed by the OSI conformance standards to the formal test generation methodologies,

and vice versa.

In Section 4.1, we discuss the definitions of test purposes and corresponding abstract test cases which

specify the ASP/PDU exchanges between an IUT and upper/lower testers that are needed to implement

test purposes. Then the test purposes for our example protocol of Figure 3.1 are defined based on its

formal specification. TTCN graphic syntax (i.e., tables) is used to describe the abstract test cases. For

more information regarding TTCN, we suggest the paper included in Chapter II by Probert and

Monkewich entitled TTCN: The International Notation for Specifying Tests of Communications Systems.

While we focus on behavior tests, the reader should keep in mind that basic interconnection and

capability tests are subsets of behavior tests. In Section 4.2, test system methods defined by the

standards are studied in terms of their effect on the abstract test suite. In Section 4.3, the applicability of

test generation techniques to improve execution time and effectiveness of conformance tests is discussed.

4.1. Abstract Test Cases

Recall our discussion in Chapter II regarding various types of tests defined by the conformance testing

standard. Among these tests, the behavior tests constitute the major part of conformance tests. They

III.31

include the tests for valid, inopportune and invalid PDUs, timers, etc. Although effectiveness in terms of

error detection capability and run-time efficiency may vary for each technique, all of the formal test

generation techniques previously discussed in this chapter are applicable to behavior tests if the behavior

of the protocol can be expressed in the model that the formal techniques require (with the possible

exception of tests for invalid PDUs). Basic interconnection and capability tests are subsets of the

behavior tests, and, therefore, can be combined within the model for the behavior tests.

Specifications written as FSMs are natural candidates for the formal test generation techniques. They are

also applicable to SDL- and Estelle- based specifications, which either consist of a single process or can

be combined into a single global process, and EFSM-based specifications if the specification does not

include transient states and spontaneous transitions (as defined in Chapter I). Such restrictions are due to

the testers’ need to control variables and parameter values that influence the external behavior of an

implementation. State-oriented LOTOS specifications are also possible candidates for the formal test

generation techniques. Although the discussions in this section are primarily based on specifications

written as FSMs, they are also applicable to all specifications satisfying the above-mentioned criteria.

As stated in the conformance testing standard, before constructing abstract test cases for behavior tests,

test purposes need to be defined based on the protocol specification. Test purposes are written to define

the objective of a test without describing the specific actions to be taken by the lower or upper testers or

the IUT. In general, each input/output action constitutes an edge in a directed graph representing the

behavior of the IUT in response to those inputs. Here are two examples of test purposes defined for our

example specification of Figure 3.1:

Test purpose for the edge of (s1, s2; N . Setupack/U . DialTone) : Verify that IUT generates U.DialTone

at the user interface as response to N.SetupAck from the network interface at state s1; the IUT is

expected to move to state s2.

Test purpose for the edge of (s3, s4; N . Alert/U . RingBack) : Verify that IUT generates U.RingBack at

the user interface as response to N.Alert from the network interface at state s3; the IUT is expected to

move to state s4.

The following assumptions are made for a hypothetical test system for the purposes of our discussion:

- An implementation of the PhoneDTE specification is the IUT;

- An upper tester assumes the role of the user interface (i.e., every input or output with a prefix of U

is handled by the upper tester);

- A lower tester assumes the role of the network interface (i.e., every input or output with a prefix of

N is handled by the lower tester);

Once test purposes are defined, abstract test suite designers construct the abstract test cases each of

III.32

which contains a preamble, a test body and a postamble based on the test purposes. Recall from Chapter

II that the notions of preamble, test body and postamble constitute a conceptual framework where the

preambles and postambles are optional. Each notion is useful in organizing a test suite into

hierarchically structured fragments of text which may be grouped by test purposes and may be used in

more than one test case.

TTCN defines an operator called attach (denoted as "+" in the tabular representation) that may be

considered as a recursive "include" or "copy" directive to incorporate the body of the named text at the

point the attach operator appears in the text (see Chapter II for more information in TTCN). Thus, a

named set of actions by an IUT or a test entity (e.g., a preamble, postamble or verification routine) may

be included within a test body via an attach directive. An example for the use of attach operator can be

seen in Figure 3.15.

A preamble consists of a set of actions (i.e., ASP/PDU exchanges between an IUT and upper/lower

testers) to bring an IUT into a desired state where the test will be conducted. For example, the preamble

for state s1 of PhoneDTE is that the user interface sends a U.ConReq to the IUT, the network interface

receives a N.Setup and sends a N.SetupAck to the IUT, and then the user interface receives a U.DialTone

from the IUT. The TTCN description of this preamble is shown in Figure 3.13. An upper tester and a

lower tester (denoted as L and U) are used to test the network and user interfaces of an implementation,

respectively. In TTCN, "!" and "?" denote sending and receiving a message (ASP or PDU) to/from an

IUT, respectively. In this example, a timer (called T_operator) is defined to limit the time to wait for a

particular message that an IUT is expected to send. The receipt of an unexpected message is shown as

L?OTHERWISE and U?OTHERWISE in Figure 3.13. Expecting no messages from an IUT (i.e.,

?TIMEOUT T_operator in Figure 3.13) is considered to be inconclusive and denoted as (I) in the verdict

column, since the conformance testing standard allows for fail verdicts only in a test body, not in a

preamble or postamble.

A postamble is defined as the actions to bring an IUT into a pre-defined initial state after a test is

conducted. For the example specification of PhoneDTE, sending a U.ClearReq to an IUT will put the

implementation in state s0, therefore, constituting a postamble applicable for every state. The TTCN

representation of this postamble is given in Figure 3.14. Note that the response of an IUT to U.ClearReq

in any state (except s6) is N.Disc which is different from the response when the IUT is in state s6

(N.Null). In Figure 3.14, both responses are shown as acceptable. Unexpected responses by the IUT also

cause an inconclusive verdict in the postamble as illustrated in Figure 3.14.

A test body consists of two logical parts. The first part specifies the ASP/PDU exchanges (test events)

required to satisfy the test purpose. The second part is the procedure to verify the new state of the IUT.

The test body in Figure 3.15 corresponds to the first example test purpose defined above for state s1.

Unexpected responses cause the IUT to fail this test case (shown as (F) in the verdict column of Figure

III.33

3.15). After sending U.DialTone to the upper tester, the attachment of the fragment of text named

VERIFICATION_S2 consists of the ASP/PDU exchanges used to verify that the new state of the IUT is

s2. If the verification routine completes successfully, a pass verdict is assigned for this test case (shown

as (P) in Figure 3.15). For verification, we use the UIO sequence of state s2 (given in Figure 3.11) in

TTCN format as shown in Figure 3.16.

Dynamic Behavior
Reference PHONE_DTE/PREAMBLE_S1

Identifier PREAMBLE_S1

Purpose Necessary steps to place the IUT in test state s1.

Default Reference

Behavior Description Label Constraint Verdict Comments

Reference

PREAMBLE_S1

U!U.ConReq Upper Tester

sends a ConReq

START T_operator A timer is started

to wait for N.Setup

L?N.Setup

L!N.SetupAck (CANCEL T_operator) Lower Tester

sends a N.SetupAck

START T_operator A timer is started

to wait for U.DialTone

U?U.DialTone Upper Tester receives

dial tone

?TIMEOUT T_operator (I) No output is inconclusive

U?OTHERWISE (I) Any other output to

Upper Tester is inconclusive

L?OTHERWISE (I) Any other output to

Lower Tester is inconclusive

?TIMEOUT T_operator (I) No output is inconclusive

L?OTHERWISE (I) Any other output to

Lower Tester is inconclusive

U?OTHERWISE (I) Any other output to

Upper Tester is inconclusive

Figure 3.13. TTCN representation of state s1 preamble for PhoneDTE specification.

III.34

Dynamic Behavior
Reference PHONE_DTE/POSTAMBLE

Identifier POSTAMBLE

Purpose Necessary steps to bring the IUT in test state s0

after a test body is run.

Default Reference

Behavior Description Label Constraint Verdict Comments

Reference

POSTAMBLE

U!U.ClearReq Upper Tester

sends a ClearReq

START T_operator A timer is started

to wait for N.Disc or N.Null

L?N.Disc Lower Tester

receives a Disc

?TIMEOUT T_operator No output is N.Null

L?OTHERWISE (I) Any other output to

Lower Tester is inconclusive

U?OTHERWISE (I) Any other output to

Upper Tester is inconclusive

Figure 3.14. TTCN representation of the postamble for PhoneDTE specification.

Dynamic Behavior
Reference PHONE_DTE/STATE_TEST/TEST_S1_1

Identifier TEST_S1_1

Purpose Verify that IUT generates U.DialTone at the user interface

as response to N.SetupAck from network interface at state s1;

the IUT is expected to move to state s2.

Default Reference

Behavior Description Label Constraint Verdict Comments

Reference

TEST_S1_1

+PREAMBLE_S1 Move IUT to state s1

L!N.SetupAck Lower Tester

sends a N.SetupAck

START T_operator Upper Tester starts

a timer

U?U.DialTone Upper Tester receives

U.DialTone

+VERIFICATION_S2 (P) Verify new state is s2

+POSTAMBLE Move IUT to state s0

U?OTHERWISE (F) Any other output to

Upper Tester is a Fail

L?OTHERWISE (F) Any other output to

Lower Tester is a Fail

?TIMEOUT T_operator (F) No output is a Fail

Figure 3.15. TTCN representation of a test case for PhoneDTE specification.

III.35

Dynamic Behavior
Reference PHONE_DTE/VERIFICATION_S2

Identifier VERIFICATION_S2

Purpose Verify that IUT is in state s2.

This example implements the UIO sequence of s2 from Figure 3.9

Default Reference

Behavior Description Label Constraint Verdict Comments

Reference

VERIFICATION_S2

U!U.Digit Upper Tester sends U.Digit

START T_operator A timer is started

U?U.InfoToneOff Upper Tester receives

U.InfoToneOff

U?OTHERWISE (F) Any other output to

Upper Tester is a Fail

L?OTHERWISE (F) Any other output to

Lower Tester is a Fail

?TIMEOUT T_operator (F) No output is a Fail

Figure 3.16. TTCN representation of state s1verification of PhoneDTE specification.
This example implements the UIO sequence of s2 from Figure 3.9.

The implementation options may generate different outputs for a given input at a given state. TTCN

allows for different responses for an input as shown in the example of the postamble for PhoneDTE

specification (Figure 3.14), where the IUT response depends on its current state.

4.2. OSI Abstract Test Methods

The abstract test methods described in the conformance testing standard [1] (i.e., local, distributed,

coordinated, and remote methods) are based on the availability of the abstract service primitives (ASPs)

at a given point of control and observation (PCO) (see Section 2 in Chapter II). Therefore, the abstract

test methods define the model to be used to represent an IUT for the formal test generation methods.

Restrictions or additional features are imposed on the IUT model based on the capabilities of the test

method used. For example, the remote method requires only the interactions with the lower tester to be

modeled, whereas, in the case of distributed method, the model for the same IUT needs additional

features to represent the interactions with the upper tester. Therefore, the model representing an IUT to

be tested in a remote testbed is different from the model for the same IUT to be tested in a distributed

testbed; the latter is a superset of the former. In general, the local method requires the most detailed

model since it assumes that all ASPs and PDUs of an IUT can be controlled and observed. The simplest

model is for the remote testbed which is the most restrictive (from a tester’s point of view) among the

abstract test methods.

Let us examine the specification of PhoneDTE to check which test method can be applicable for testing

III.36

its implementations. If remote testing method is adopted to test PhoneDTE implementations, as can be

seen from Figure 3.1, any state transition that requires interactions with a user interface cannot be tested.

Although we could use an operator as an upper tester to generate the inputs sent by the user interface, the

operator would not be able to analyze the responses sent to the user interface by the IUT. Recall that an

upper tester is a software system capable of sending stimuli to an IUT and analyzing the responses at

upper layer interface (i.e., the user interface of PhoneDTE). Therefore, for the PhoneDTE example, the

local, distributed or coordinated methods are the only choices. As a consequence, manufacturers of

PhoneDTE, however, must provide an accessible interface for the upper tester.

It can be seen from the test case example of Figure 3.15 that a coordination mechanism is required to run

the test cases successfully. In Figure 3.15, the upper tester should know when to expect the U.DialTone

response from the IUT. A coordination protocol that can notify the upper tester after lower tester sends

N.SetupAck is required so that the upper tester can start T_operator timer and wait for U.DialTone from

the IUT.

4.3. Application of Test Generation Techniques to OSI Test Methods

The concept of controllability found in the formal test generation techniques (e.g., homing sequences,

transfer sequences, etc.) corresponds to the existence of the preambles and postambles in the OSI

standards. As described in Section 4.1, a preamble brings the IUT into the desired state of a test case

from a stable state, and a postamble puts the IUT back into a stable state after the test body is run.

Typically, the initial state is defined (or interpreted) as the stable state in an abstract test suite. The

solution brought to the controllability problem by the formal test generation methods is the use of various

test sequencing methods as discussed in Section 2. Therefore, the test generation methods (for example,

optimization techniques based on the Chinese or the rural Chinese postman problems or the test

sequencing presented by Sarikaya and Bochmann) can eliminate the overhead of preambles and

postambles where applicable.

It is stated in Part 2 of the conformance testing standard that every test case should have a preamble(s)

and postamble(s) [1]. While it is possible to execute each test case individually by using a preamble and

postamble, the standard does not prohibit the concatenation of test bodies (i.e., not utilizing the preamble

and postamble of a test case all the times) nor optimizing the organization of a test suite. The standard

also does not mandate these options be part of a test suite. For example, if the ending state of a test body

is the initial state, there is no need to run a postamble. Therefore, if a test sequencing method is used to

order the test bodies in a tour manner (i.e., a non-empty sequence of test bodies), the time to run test

cases can be significantly reduced. In this case, preambles and postambles are necessary only when an

individual test case is to be run (as opposed to a number of them, one after another) or a test case fails

and the sequence of test bodies is broken.

In order to incorporate the controllability solution of the formal test generation methods into the abstract

III.37

test case definitions, the preambles and postambles can be defined such that they are executed

conditionally. For example, each preamble may contain a boolean variable which can be defined as a test

suite variable to allow the preambles run conditionally. This variable can be set to bypass a preamble

when the previous test run in a test suite results in a "pass" verdict. Similarly, the same variable can skip

the execution of a postamble if the verdict of a test case is "pass."

Suppose we consider applying such a test sequencing technique for the PhoneDTE example. Let us

define a test suite parameter called proceed_tour and a test suite boolean variable called prev_verdict.

When a test designer wants to use test sequencing proceed_tour is set to true; prev_verdict is set to true

if the previous test case in the tour of test bodies results in a pass verdict, otherwise to false. We hav e to

modify the preambles and postambles originally defined for PhoneDTE to accommodate proceed_tour

and prev_verdict. In Figure 3.17, the modification is given for the preamble of state s1 (originally given

in Figure 3.13). This modified preamble is executed when a test designer (or laboratory) wants to use a

test sequencing approach (i.e., proceed_tour=true) and the previous test was resulted in a pass verdict

(i.e., prev_verdict=true); if any of these variables are set to false, the preamble is executed. The same

argument is also valid for the postambles.

III.38

Dynamic Behavior
Reference PHONE_DTE/PREAMBLE_S1

Identifier PREAMBLE_S1

Purpose Necessary steps to place the IUT in test state s1.

This preamble will be run only if the previous verdict in the tour

is a fail or tester wants to run an individual test.

Default Reference

Behavior Description Label Constraint Verdict Comments

Reference

PREAMBLE_S1

[(proceed_tour) AND (prev_verdict)]

U!U.ConReq Upper Tester

sends a ConReq

START T_operator A timer is started

to wait for N.Setup

L?N.Setup

L!N.SetupAck (CANCEL T_operator) Lower Tester

sends a N.SetupAck

START T_operator A timer is started

to wait for U.DialTone

U?U.DialTone Upper Tester receives

dial tone

?TIMEOUT T_operator (I) No output is inconclusive

U?OTHERWISE (I) Any other output to

Upper Tester is inconclusive

L?OTHERWISE (I) Any other output to

Lower Tester is inconclusive

?TIMEOUT T_operator (I) No output is inconclusive

L?OTHERWISE (I) Any other output to

Lower Tester is inconclusive

U?OTHERWISE (I) Any other output to

Upper Tester is inconclusive

[NOT((proceed_tour) AND (prev_verdict))]

Figure 3.17. TTCN representation of state s1 preamble modified for test sequencing.

For the observability problem (i.e., verifying the state of an IUT), the test generation methods discussed

in Section 2 introduce the concepts of the distinguishing, characterizing and UIO sequences. Any of

these techniques can be used for the state verification routines in test bodies. In the above example, we

have already used the UIO sequences in one of the test cases for the PhoneDTE specification.

Continuing with this example, we can obtain an order to run the test bodies so that the run-time is

minimized, if all test bodies result in pass verdicts. Any of the optimization techniques discussed in

Section 2 can be used for ordering the test bodies which have the preambles and postambles with the

conditional test suite parameters (Figure 3.17). Figure 3.18 presents a tour of test bodies generated by

the technique of Aho et al. using the rural Chinese postman algorithm. In fact, the test sequence of

Figure 3.12 and the tour of test bodies in Figure 3.18 are equivalent, except that the latter is presented in

III.39

the terminology adopted by the standards organizations. The UIO sequence of each state sx is referred to

as VERIFY_sx. In Figure 3.18, the column called TEST BODY identifies which test body is to be run

(including the verification routine, but excluding the preamble and postamble of the test case) at that step

of the tour. The columns called PREAMBLE and POSTAMBLE defines the preambles and postambles,

respectively, that are needed if a test fails and the tour is broken. The brackets around each preamble and

postamble emphasize that they are run conditionally (except for the first preamble, which has to be run to

bring the IUT into the initial state at the beginning of the tour). If any of the test cases results in a fail

verdict, the next step of the tour has to run the preamble to continue the tour. Similarly, a test designer

(or laboratory) can set proceed_tour to be false to run each test case individually (test body together with

the preamble and postamble). There are several procedures used in Figure 3.18 (labeled as proc) in order

to link the test bodies in a minimum-length tour. These procedures are defined based on the specification

of PhoneDTE as follows:

proc(s0_to_s1): U.ConReq/N.Setup

proc(s1_to_s2): N.SetupAck/U.DialTone

proc(s2_to_s3): U.Digit/U.InfoToneOff

proc(s3_to_s4): N.Alert/U.RingBack

proc(s4_to_s5): N.Con/U.ConAck

Note that during the execution of the above procedures a pass/fail verdict cannot be assigned for an IUT

since the procedures are not the part of a test body. They can be viewed as different preambles for a

given state to minimize the run-time of the test bodies.

III.40

ORDER OF EXECUTION FOR TEST CASES

STEP PREAMBLE TEST BODY POSTAMBLE

1 +preamble_s0 U.ConReq/N.Setup; verify_s1 [+postamble]
2 [+preamble_s2] U.ClearReq/N.Disc; verify_s0 [+postamble]
3 [+preamble_s1] U.ClearReq/N.Disc; verify_s0 [+postamble]
4 [+preamble_s1] N.SetupAck/U.DialTone; verify_s2 [+postamble]
5 [+preamble_s3] U.Digit/N.Info; verify_s3 [+postamble]
6 [+preamble_s4] N.Con/U.ConAck; verify_s5 [+postamble]
7 [+preamble_s6] U.ClearReq/N.Null; verify_s0 [+postamble]

+proc(s1_to_s2)
8 [+preamble_s2] U.Digit/U.InfoToneOff; verify_s3 [+postamble]
9 [+preamble_s4] N.Disc/U.StopRingBack; verify_s6 [+postamble]

+proc(s0_to_s1)
+proc(s1_to_s2)
+proc(s2_to_s3)

10 [+preamble_s3] N.Alert/U.RingBack; verify_s4 [+postamble]
11 [+preamble_s5] N.Disc/U.StopCon; verify_s6 [+postamble]

+proc(s0_to_s1)
+proc(s1_to_s2)
+proc(s2_to_s3)

12 [+preamble_s3] N.Prog/U.Announce; verify_s6 [+postamble]
+proc(s0_to_s1)
+proc(s1_to_s2)
+proc(s2_to_s3)
+proc(s3_to_s4)
+proc(s4_to_s5)

13 [+preamble_s5] U.ClearReq/N.Disc; verify_s0 [+postamble]
+proc(s1_to_s2)
+proc(s2_to_s3)
+proc(s3_to_s4)

14 [+preamble_s4] U.ClearReq/N.Disc; verify_s0 [+postamble]
+proc(s1_to_s2)
+proc(s2_to_s3)

15 [+preamble_s3] U.ClearReq/N.Disc; verify_s0 [+postamble]
+proc(s1_to_s2)

16 [+preamble_s2] N.Prog/U.Announce; verify_s6 [+postamble]

Figure 3.18. Sequencing test bodies to minimize the run-time.

(This tour is equivalent to the one given in Figure 3.12.)

5. Summary

In this chapter, we introduce the four major techniques reported in the literature for the algorithmic

generation of protocol conformance tests based on the extended or basic FSM models . We also discuss

the test generation techniques based on the FDTs. The techniques developed for the FSM models (basic

or extended) can be also applicable to the models based on FDTs with some restrictions. We present

several studies as examples of such efforts. The concepts defined by the conformance testing standard

are discussed in terms of their applicability to the conformance test generation methods.

The list of full papers that we include at the end of this chapter is as follows (in the order of appearance):

III.41

- B. Sarikaya and G.v. Bochmann, "Some Experience with Test Sequence Generation for
Protocols," Proc. Protocol Specification, Testing and Verification II, C. Sunshine (ed.),
North-Holland, 1982, pp.555-567.

- M.H. Sherif, G.L. Hoover and R.P. Wiederhold, "X.25 Conformance Testing − A Tutorial,"
IEEE Communications Magazine, Vol. 24, No. 1, Jan. 1986, pp. 16-27.

- M.U. Uyar and A.T. Dahbura, "Optimal Test Sequence Generation for Protocols: The Chinese
Postman Algorithm Applied to Q.931," Proc. IEEE Global Communications Conf., Dec.
1986, pp. 68-72.

- F.C. Hennie, "Fault Detecting Experiments for Sequential Circuits," Proc. Fifth Ann. Symp.
on Switching Circuit Theory and Logical Design, Nov. 1964, pp. 95-110.

- G. Gonenc, "A Method for the Design of Fault Detection Experiments,"
IEEE Trans. on Computers, Vol. COM-19, No. 6, June 1970, pp. 551-558.

- W. Hengeveld and J. Kroon, "Using Checking Sequences for OSI Session Layer Conformance
Testing," Proc. Protocol Specification, Testing and Verification VII, H. Rudin and C.H. West
(eds.), North-Holland, 1987, pp.435-449.

- T.S. Chow, "Testing Software Design Modelled by Finite-State Machines," IEEE Trans. on
Software Engineering, Vol. SE-4, No. 3, May 1978, pp. 178-187.

- S. Fujiwara, G. v. Bochmann, F. Khendek, M.Amalou, and A. Ghedamsi, "Test Selection Based
on Finite State Models, IEEE Trans. on Software Engineering, Vol. 17, No. 6, June 1991, pp.
591-604.

- K.K. Sabnani and A.T. Dahbura, "A Protocol Test Generation Procedure," Computer
Networks, Vol. 15, No. 4, 1988, pp.295-297.

- A.V. Aho, A.T. Dahbura, D.Lee and M.U. Uyar, "An Optimization Technique For Protocol
Conformance Test Generation Based on UIO Sequences and Rural Chinese Postman Tours,"
IEEE Trans. on Communications, Vol. 39, No. 11, Nov. 1991, pp. 1604-1615.

- R. E. Miller and S. Paul, "Generating Minimal Length Test Sequences for Conformance Testing
of Communication Protocols, Proc. IEEE INFOCOM’91, 1991, pp. 8D.4.1-8D.4.10.

- D. Sidhu and T. Leung, "Fault Coverage of Protocol Test Methods," Proc. IEEE
INFOCOM’88, 1988, pp. 80-85.

- L. Bromstrup and D. Hogrefe, "TESDL: Experience with Generating Test Cases from DSL
Specifications," SDL’89: The Language at Work, North-Holland, 1989, pp. 267-279.

- E. Brinksma, G. Scollo and G. Steenbergen, "LOTOS Specifications, Their Implementations
and Their Tests," Proc. Protocol Specification, Testing and Verification VI, B. Sarikaya and
G.v. Bochmann (eds.), North-Holland, 1986, pp.349-360.

- B. Sarikaya, G.v. Bochmann and E. Cerny, "A Test Design Methodology for Protocol Testing,"
IEEE Trans. on Software Engineering, Vol. SE-13, No. 5, May 1987, pp. 518-531.

- D. Gueraichi and L. Logrippo, "Derivation of Test Cases for LAP-B from a LOTOS
Specification," Proc. of Second Int’l. Conf. on FDTs for Distributed Systems and
Communication Protocols, 1989, pp. 489-508.

- H. Ural, "A Test Derivation Method For Protocol Conformance Testing," Proc. Protocol
Specification, Testing and Verification VII, H. Rudin and C.H. West (eds.), North-Holland,
1987, pp.347-358.

6. Open Research Problems and Further Reading

Algorithms to generate test sequences for protocol implementations constitutes one of the largest bodies

of literature in the field of communication protocols. The task of designing algorithms becomes even

more challenging when FDTs are utilized, which are the recent solution for writing unambiguous

specifications. Currently, even the definition of test purposes is not agreed upon (i.e., what to test in an

implementation for its conformance to the specification).

Active research has been pursued over many years for generating test sequences for the specifications

that are in the form of an FSM. The results are directly applicable to EFSM- and FDT-based

III.42

specifications if certain limitations are imposed. For example, the specifications that avoid spontaneous

transitions, and use parameters and variables that can be externally controlled and observed allow the

direct application of these techniques. However, one may argue that these restrictions may be too

limiting for specifying the ever-growing complexity of the services demanded by users and a range of

implementation options. For example, allowing null in the permissible input set accommodates

spontaneous transitions. A null input can be interpreted as the action of a test system is to set a timer and

wait for a well-defined action and related output (for example, retransmission of a PDU with an expected

sequence number). Indeed, the example of retransmission after expiry of an internal timer within the

IUT is characteristic of a large class of spontaneous transitions. Thus, excluding spontaneous transitions

or transient states fails to address a real-life problem. However, there is no literature which categorizes

the use of spontaneous transitions and transient states, and which suggests realistic means to address the

related issues of synchronization and control. This topic is an open research problem to be addressed in

a framework of algorithmic test generation techniques − although this problem is routinely faced by

designers of test systems and test suites, and solved by their intuition and insight.

For the protocol designer, the trade-off is specifying the protocols formally so that they can be precise,

and that (at the same time) they can be thoroughly tested. The well-studied techniques of FSM testing

are one of the best starting points to be explored and extended to cover the gap between formal

specification and testing. Examples of these efforts are discussed in Section 3.

Designing specifications for testability is a major concern. As discussed in Section 2, special features

such as status significantly reduce the complexity of the testing problem since such a feature is a built-in

capability for the state verification step of the basic test procedure defined in Section 2.1. Another issue

that needs attention during the definition of specifications is avoiding unsynchronizable state transitions

which we have already discussed in Sections 7 and 9 of Chapter II.

One of the open questions that will be answered in time is whether the full capabilities of the current

FDTs may make specifications very difficult to verify and to test, hence, threatening the interoperability

of implementations − the main purpose of the Open Systems framework. Therefore, it is not surprising

that most of the research reported in the literature uses only a small subset of the capabilities offered by

the FDTs. Specific examples of this limited use include monolithic models (i.e., specifications that have

a single process as opposed to several communicating processes), normal form specifications (somewhat

limited versions of Estelle-based specifications), dialects and styles of FDTs convenient to testing (e.g.,

state-oriented specification style of LOTOS). Only with such simplifications, small contributions can be

made towards developing algorithmic test generation procedures. However, we believe that only a

combined effort from researchers, developers and standards organizations will eventually bring effective

solutions for algorithmic techniques to test real-life protocols that are specified in formal languages.

7. References for Chapter II

III.43

[1] Information Processing Systems − OSI Conformance Testing Methodology and Framework,
ISO/IEC JTC 1, IS 9646, Parts 1-5, 1991.

[2] S. Naito and M. Tsunoyama, "Fault Detection For Sequential Machines by Transition Tours,"
Proc. 11th IEEE Fault Tolerant Computing Symp., 1981, pp. 238-243.

[3] M. K. Kuan, "Graphics Programming Using Odd or Even Points," Chinese Mathematics, Vol.
1, 1962, pp. 273-277.

[4] Z. Kohavi, "Switching and Finite Automata Theory," McGraw Hill, New York, 1978.

[5] A. Bhattacharyya, Checking Experiments in Sequential Machines, John Wiley & Sons, New
York, 1989.

[6] Y. N. Shen, F. Lombardi and A. T. Dahbura, "Protocol Conformance Testing by Multiple UIO
Sequences," Proc. Protocol Specification, Testing, and Verification IX, E. Brinksma, G.
Scollo and C. Vissers (eds.), North-Holland, 1989.

[7] M.-S. Chen, Y. Choi and A. Kershenbaum, "Minimal Length Test Sequences for Protocol
Conformance," Proc. of the 1st Network Management and Control Workshop, Polytechnic
University, New York, Sept. 1989.

[8] A.T. Dahbura and K.K Sabnani, "An Experience in Estimating Fault Coverage of a Protocol
Test," Proc. of IEEE INFOCOM’88, 1988, pp. 71-79.

[9] G.J. Holzmann, "A Theory for Verification," IEEE Trans. on Computers, Vol. C-31, No. 8,
Aug. 1982, pp.730-738.

[10] C.H. West, "An Automated Technique of Communications Protocol Validation," IEEE Trans.
on Communications, Vol. COM-26, No. 8, Aug. 1978, pp. 1271-1275.

[11] K.K. Sabnani, A.M. Lapone and M.U. Uyar, "An Algorithmic Procedure for Checking Safety
Properties of Communication Protocols," IEEE Trans. on Communications, Vol. COM-37,
No. 9, Sept. 1989, pp. 940-948.

[12] R.E. Miller and G.M. Lundy, "An Approach to Modeling Communication Protocols Using
Finite State Machines and Shared Variables," Proc. IEEE Global Communications Conf.,
Dec. 1986, pp. 3.8.1-3.8.5.

[13] M.G. Gouda, "Closed Covers: To Verify Program of Communicating Finite State Machines,"
IEEE Trans. on Software Engineering, Vol. SE-10, No. 6, Nov. 1984, pp. 846-855.

[14] S.T. Voung, D.D. Hui and D.D. Cowan, "VALIRA: A Tool for Protocol Validation via
Reachability Analysis," Proc. Protocol Specification, Testing, and Verification VI, B.
Sarikaya and G.v. Bochmann (eds.), North-Holland, 1986, pp. 35-42.

[15] R. Milner, "A Calculus of Communicating Systems," Lecture Notes in Computer Science,
Vol. 92, New York: Springer-Verlag, 1980.

[16] C.A.R. Hoare, "A Communicating Sequential Processes," Prentice-Hall, Englewood, New
Jersey, 1985, pp. 111-117. Computer Science, Vol. 92, New York: Springer-Verlag, 1980.

[17] J.P. Favreau and R.J. Linn, "Automatic Generation of Test Scenario Skeletons from Protocol
Specifications Written in Estelle," Proc. Protocol Specification, Testing, and Verification VI,
B. Sarikaya and G.v. Bochmann (eds.), North-Holland, 1986, pp. 191-202.

III.44

