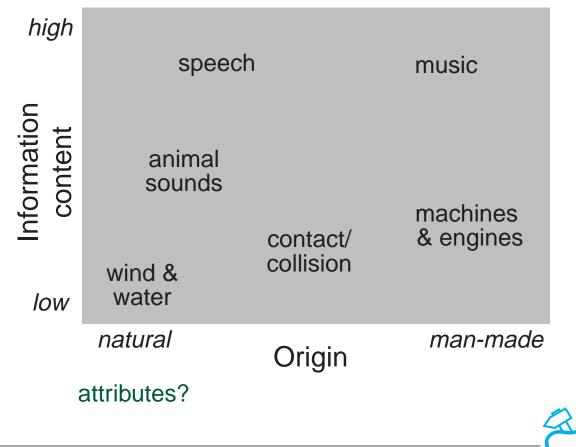
EE E6820: Speech & Audio Processing & Recognition

Lecture 7: Music analysis and synthesis

- **1** Music and nonspeech
- 2 Music synthesis techniques
- **3** Sinewave synthesis
- 4 Music analysis
- **5** Transcription


Dan Ellis <dpwe@ee.columbia.edu> http://www.ee.columbia.edu/~dpwe/e6820/

Music & nonspeech

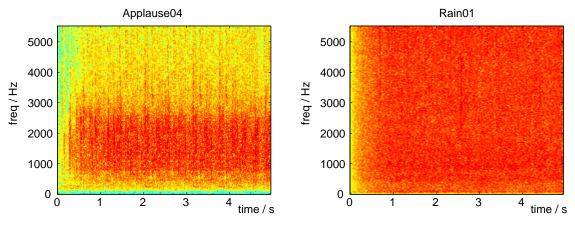
- What is 'nonspeech'?
 - according to research effort: a little music
 - in the world: most everything

Sound attributes

- Attributes suggest model parameters
- What do we notice about 'general' sound?
 - psychophysics: pitch, loudness, 'timbre'
 - bright/dull; sharp/soft; grating/soothing
 - sound is not 'abstract': tendency is to describe by source-events

• Ecological perspective

what matters about sound is 'what happened'
 →our percepts express this more-or-less directly


Aside: Sound textures

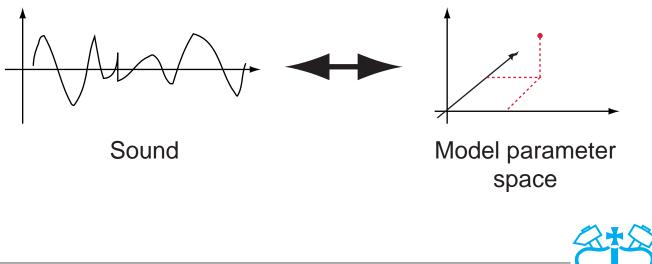
- What do we hear in:
 - a city street
 - a symphony orchestra

• How do we distinguish:

- waterfall
- rainfall
- applause

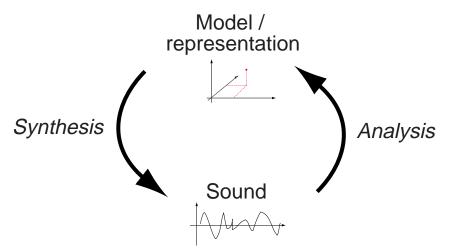
• Levels of ecological description...

Motivations for modeling


- Describe/classify
 - cast sound into model because want to use the resulting parameters

• Store/transmit

 model implicitly exploits limited structure of signal


Resynthesize/modify

- model separates out interesting parameters

Analysis and synthesis

• Analysis is the converse of synthesis:

- Can exist apart:
 - analysis for classification
 - synthesis of artificial sounds
- Often used together:
 - encoding/decoding of compressed formats
 - resynthesis based on analyses
 - analysis-by-synthesis

Outline

1 Music and nonspeech

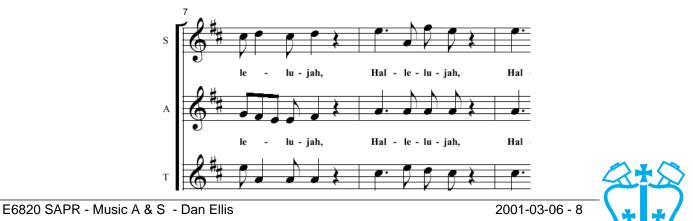
Music synthesis techniques

- Framework
- Historical development
- **3** Sinewave synthesis
- 4 Music analysis
- 5 Transcription

elements?

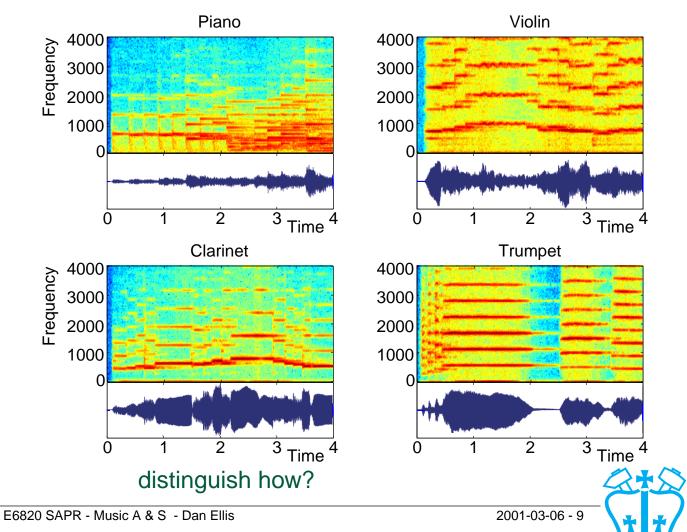
Music synthesis techniques

- What is music?
 - could be anything \rightarrow flexible synthesis needed!
- Key elements of conventional music
 - instruments


 \rightarrow note-events (time, pitch, accent level)

 \rightarrow melody, harmony, rhythm

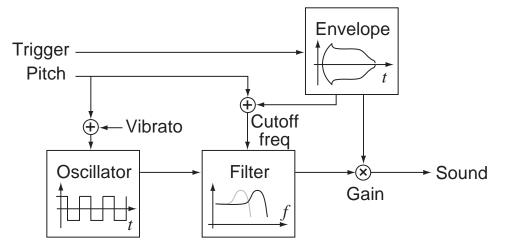
- patterns of repetition & variation


• Synthesis framework:

instruments: common framework for many notes score: sequence of (time, pitch, level) note events

The nature of musical instrument notes

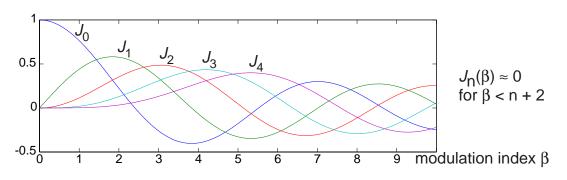
• Characterized by instrument (register), note, loudness (emphasis), articulation...

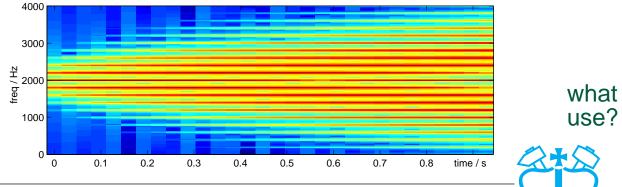

Development of music synthesis

- Goals of music synthesis:
 - generate realistic / pleasant new notes
 - control / explore timbre (quality)
- Earliest computer systems in 1960s (voice synthesis, algorithmic)
- Pure synthesis approaches:
 - 1970s: Analog synths
 - 1980s: FM (Stanford/Yamaha)
 - 1990s: Physical modeling, hybrids
- Analysis-synthesis methods:
 - sampling / wavetables
 - sinusoid modeling
 - harmonics + noise (+ transients)

others?

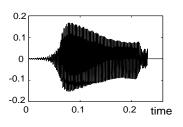
Analog synthesis


• The minimum to make an 'interesting' sound

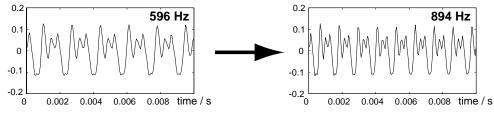

- Elements:
 - harmonics-rich oscillators
 - time-varying filters
 - time-varying envelope
 - modulation: low frequency + envelope-based
- Result:
 - time-varying spectrum, independent pitch

FM synthesis

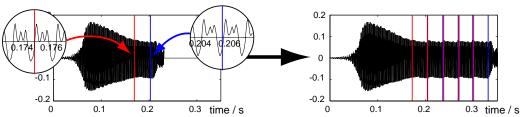
- Fast freq. modulation \rightarrow harmonic sidebands: $\cos(\omega_c t + \beta \sin \omega_m t) = \sum_{n = -\infty}^{\infty} J_n(\beta) \cos(\omega_0 + n\omega_m)$
 - $J_n(\beta)$ is a Bessel function:

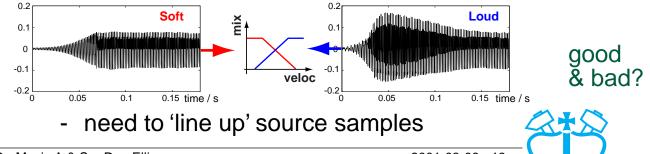


 $\rightarrow\,$ Complex harmonic spectra by varying $\beta\,$



Sampling synthesis


Resynthesis from real notes
 → vary pitch, duration, level


Pitch: stretch (resample) waveform

Duration: loop a 'sustain' section

• Level: cross-fade different examples

Outline

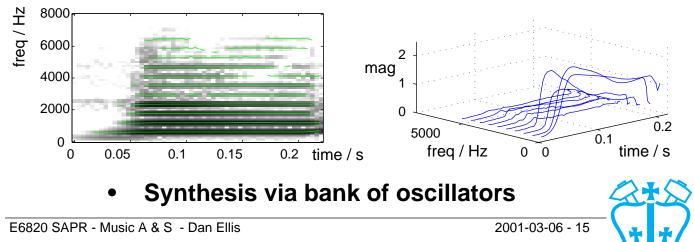
1 Music and nonspeech

3 Sinewave synthesis (detail)

- Sinewave modeling
- Sines + residual ...
- 4 Music analysis
- 5 Transcription

Sinewave synthesis

• If patterns of harmonics are what matter, why not generate them all explicitly:


$$s[n] = \sum_{k} A_{k}[n] \cos(n \cdot k \cdot \omega_{0})$$

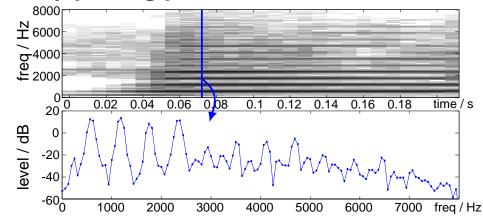
- particularly powerful model for pitched signals
- Analysis (as with speech):

3

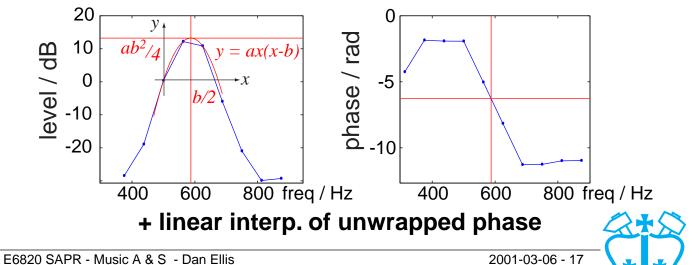
- find peaks in STFT $|S[\omega,n]|$ & track
- or track fundamental ω₀ (harmonics / autoco)
 & sample STFT at k·ω₀

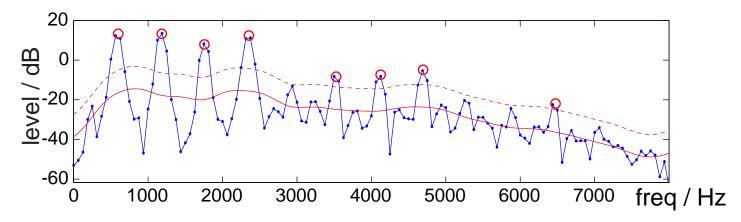
 \rightarrow set of $A_k[n]$ to duplicate tone:

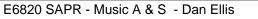
• The underlying STFT:


$$X[k, n_0] = \sum_{n=0}^{N-1} x[n+n_0] \cdot w[n] \cdot \exp{-j\left(\frac{2\pi kn}{N}\right)}$$

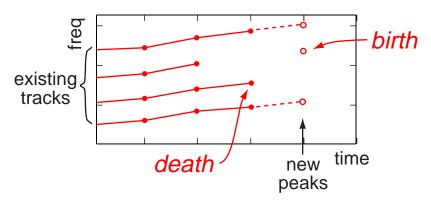
What value for *N* (FFT length & window size)? What value for *H* (hop size: $n_0 = r \cdot H$, r = 0, 1, 2...)?


- STFT window length determines freq. resol'n: $X_w(e^{j\omega}) = X(e^{j\omega}) * W(e^{j\omega})$
- Choose *N* long enough to resolve harmonics
 → 2-3x longest (lowest) fundamental period
 - e.g. 30-60 ms = 480-960 samples @ 16 kHz
 - choose $H \le N/2$
- $N \text{ too long} \rightarrow \text{lost time resolution}$
 - limits sinusoid amplitude rate of change


• Choose candidate sinusoids at each time by picking peaks in each STFT frame:


• Quadratic fit for peak, lin. interp. for phase:

- Which peaks to pick? Want 'true' sinusoids, not noise fluctuations
 - 'prominence' threshold above smoothed spec.



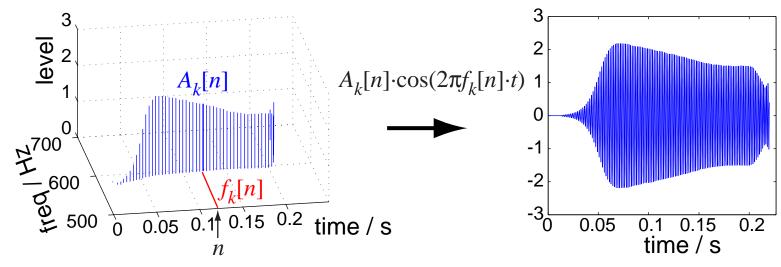
- Sinusoids exhibit stability...
 - of amplitude in time
 - of phase derivative in time
 - \rightarrow compare with adjacent time frames to test?

 'Grow' tracks by appending newly-found peaks to existing tracks:

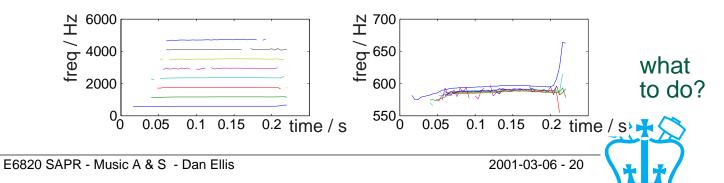
- ambiguous assignments possible

• Unclaimed new peak

- 'birth' of new track
- backtrack to find earliest trace?

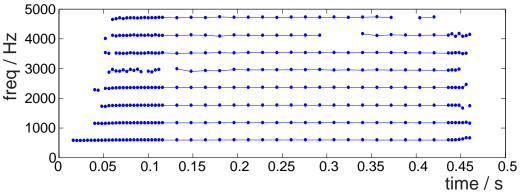

• No continuation peak for existing track

- 'death' of track
- or: reduce peak threshold for hysteresis

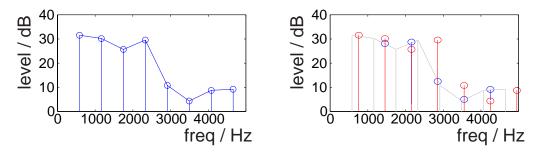


Resynthesis of sinewave models

- After analysis, each track defines contours in frequency, amplitude $f_k[n]$, $A_k[n]$ (+ phase?)
 - use to drive a sinewave oscillators & sum up



• 'Regularize' to exactly harmonic $f_k[n] = k \cdot f_0[n]$

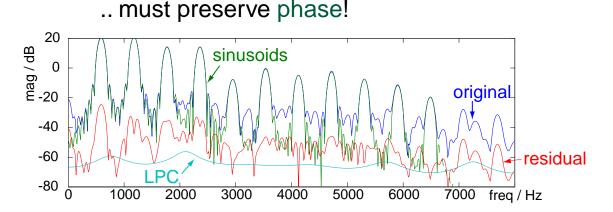

Modification in sinewave resynthesis

- Change duration by warping timebase
 - may want to keep onset unwarped

Change pitch by scaling frequencies

- either stretching or resampling envelope

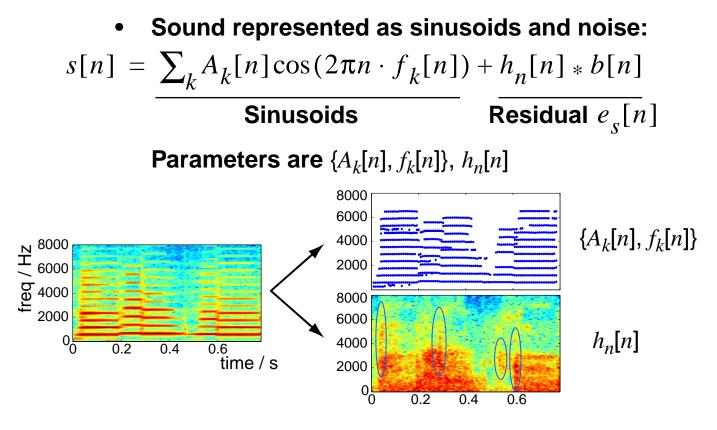
Change timbre by interpolating params


Sinusoids + residual

- Only 'prominent peaks' became tracks
 - remainder of spectral energy was noisy?
 - \rightarrow model residual energy with noise!

• How to obtain 'non-harmonic' spectrum?

- zero-out spectrum near extracted peaks?
- or: resynthesize (exactly) & subtract waveforms


$$e_s[n] = s[n] - \sum_k A_k[n] \cos(2\pi n \cdot f_k[n])$$

• Can model residual signal with LPC

 \rightarrow flexible representation of noisy residual

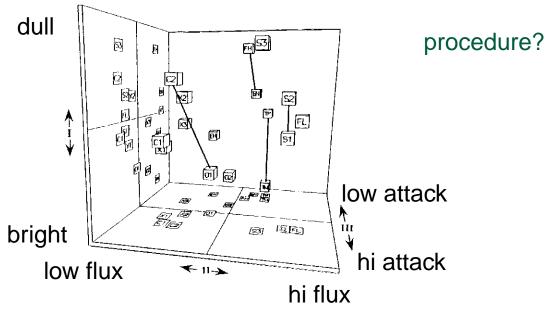
Sinusoids + noise + transients

- Separate out abrupt transients in residual? $e_s[n] = \sum_k t_k[n] + h_n[n] * b[n]$
 - more specific \rightarrow more flexible

Outline

- **Music and nonspeech** 1
- **Music synthesis techniques** 2
- Sinewave synthesis 3

- **Music analysis**
- Instrument identification
- Pitch tracking

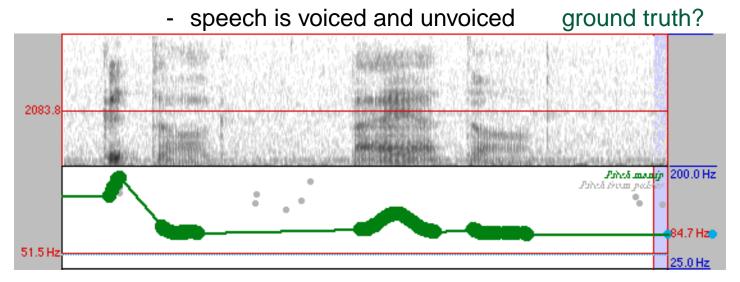


- What might we want to get out of music?
- Instrument identification
 - different levels of specificity
 - 'registers' within instruments
- Score recovery
 - transcribe the note sequence
 - extract the 'performance'
- Ensemble performance
 - 'gestalts': chords, tone colors
- Broader timescales
 - phrasing & musical structure
 - artist / genre clustering and classification

Instrument identification

Research looks for perceptual 'timbre space'

- Cues to instrument identification
 - onset (rise time), sustain (brightness)
- Hierarchy of instrument families
 - strings / reeds / brass
 - optimize features at each level

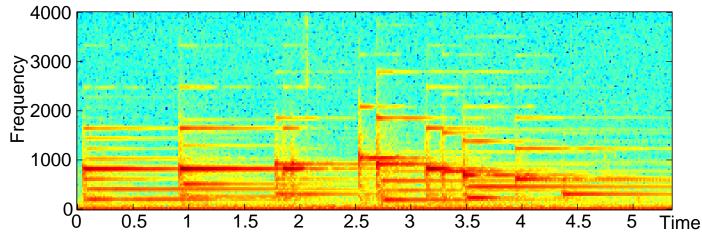


Pitch tracking

 Fundamental frequency (→ pitch) is a key attribute of musical sounds
 →pitch tracking as a key technology

• Pitch tracking for speech

- voice pitch & spectrum highly dynamic

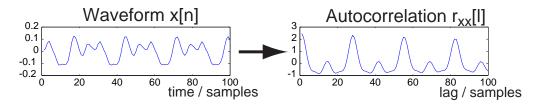

Applications

- voice coders (excitation description)
- harmonic modeling

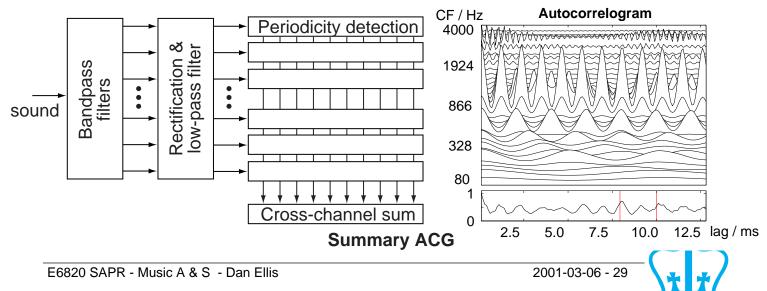
Pitch tracking for music

- Pitch in music
 - pitch is more stable (although vibrato)
 - but: multiple pitches

- Applications
 - harmonic modeling
 - music transcription (\rightarrow storage, resynthesis)
 - source separation
- Approaches: "place" & "time"

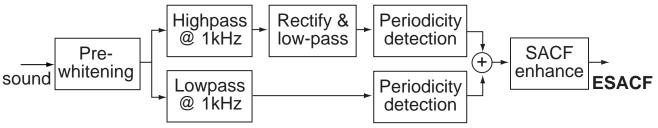


??

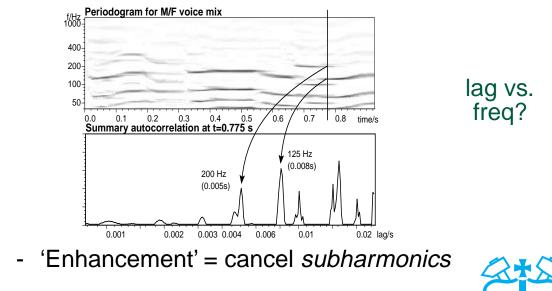

Meddis & Hewitt pitch model

- Autocorrelation (time) based pitch extraction
 - fundamental period \rightarrow peak(s) in autocorrelation

$$x(t) \approx x(t+T) \rightarrow r_{xx}(T) = \int x(t)x(t+T) \approx max$$

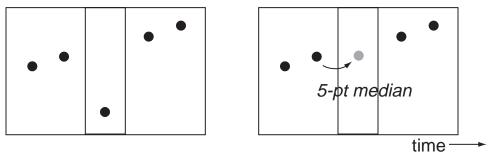


 Compute separately in each frequency band & 'summarize' across (perceptual) channels



Tolonen & Karjalainen simplification

- Multiple frequency channels can have different pitches dominant...
- But equalizing (flattening) the spectrum works:



$\rightarrow\,$ Summary AC as a function of time:

Post-processing of pitch tracks

Remove outliers with median filtering

• Octave errors are common:

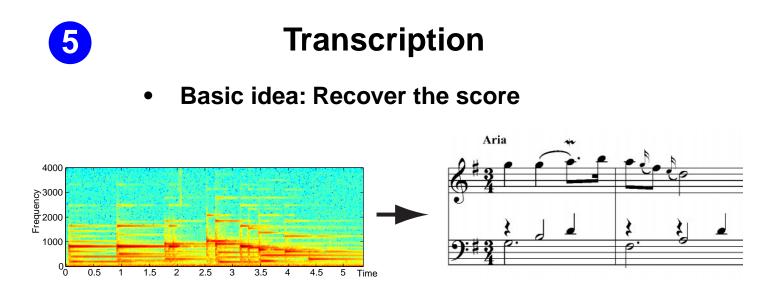
- if $x(t) \approx x(t + T)$ then $x(t) \approx x(t + 2T)$ etc.

 \rightarrow dynamic programming/HMM

- Validity
 - "is there a pitch at this time?"
 - voiced/unvoiced decision for speech

• Event detection

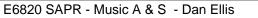
- when does a pitch slide indicate a new note?



- 1 Music and nonspeech
- 2 Music synthesis techniques
- **3** Sinewave synthesis
- 4 Music analysis

5 Transcription

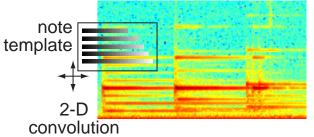
- Bottom-up and top-down
- Transcription from sinewave models



- Is it possible? Why is it hard?
 - music students do it

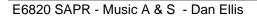
... but they are highly trained; know the rules

- Motivations
 - for study: what was played?
 - highly compressed representation (e.g. MIDI)
 - the ultimate restoration system...

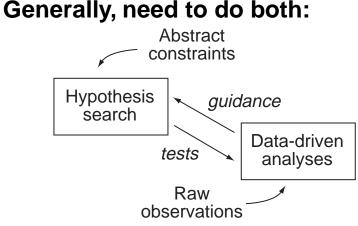


Transcription framework

• Recover discrete events to explain signal

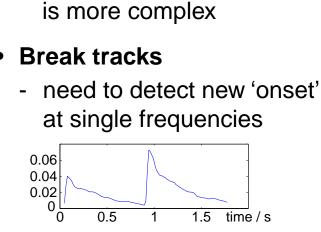

Note events $\xrightarrow{\{t_k, p_k, i_k\}}$ synthesis ? Observations X[k,n]

- analysis-by-synthesis?
- Exhaustive search?
 - would be possible given exact note waveforms
 - .. or just a 2-dimensional 'note' template?


but superposition is not linear in |STFT| space

- Inference depends on all detected notes
 - is this evidence 'available' or 'used'?
 - full solution is exponentially complex

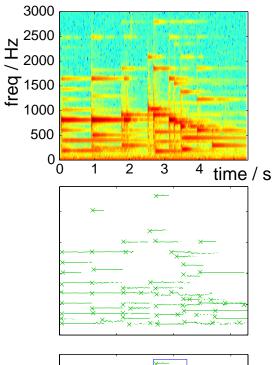
Bottom-up versus top-down

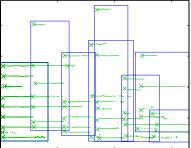

- Bottom-up: observ'n directly gives description
 - e.g. peaks in 2-D convolution
 - but: few domains are that 'linear'
- Top-down: pursue & confirm *hypotheses*
 - e.g. analysis-by-resynthesis matching
 - but: need to limit search space

- bottom-up guides & limits search
- top-down resolves ambiguities in low-level

how to transcribe?

Transcription from sinewave models




as with synthesis, but signal

Form sinusoid model

-

- Group by onset & common harmonicity
 - find sets of tracks that start around the same time
 - + stable harmonic pattern
- Pass on to constraintbased filtering...

Problems for transcription

- Music is practically worst case!
 - note events are often synchronized
 → defeats common onset
 - notes have harmonic relations (2:3 etc.) \rightarrow collision/interference between harmonics
 - variety of instruments, techniques, ...
- Listeners are very sensitive to certain errors
 - .. and impervious to others
- Apply further constraints
 - like our 'music student'
 - maybe even the whole score (Scheirer)!

Summary

'Nonspeech audio'

- i.e. sound in general
- characteristics: ecological

• Music synthesis

- control of pitch, duration, loudness, articulation
- evolution of techniques
- sinusoids + noise + transients

• Music analysis

- different aspects: instruments, pitches, performance
- transcription complications: representation, octaves, onsets, ...
- rely on high-level structural constraints

and beyond?

