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ELEN E4810: Digital Signal Processing

Topic 9:

Filter Design: FIR

1. Windowed Impulse Response

2. Window Shapes

3. Design by Iterative Optimization
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1. FIR Filter Design

! FIR filters

! no poles (just zeros)

! no precedent in analog filter design

! Approaches

! windowing ideal impulse response

! iterative (computer-aided) design
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Least Integral-Squared Error

! Given desired FR Hd(e
j!), what is the

best finite ht[n] to approximate it?

! Can try to minimize

Integral Squared Error (ISE) of

frequency responses:

best in what sense?
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Least Integral-Squared Error

! Ideal IR is hd[n] = IDTFT{Hd(e
j!)},

(usually infinite-extent)

! By Parseval, ISE

! But: ht[n] only exists for n = -M..M ,
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Least Integral-Squared Error

! Thus, minimum mean-squared error
approximation in 2M+1 point FIR is

truncated IDTFT:

! Make causal by delaying by M points

" h't[n] = 0 for n < 0
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Approximating Ideal Filters

! From topic 6,

ideal lowpass

has:

and:

!
#$ $!c#!c

� 

HLP e
j!( ) =

1 ! <!c

0 !c < ! < "

# 
$ 
% 

� 

h
LP

n[ ] =
sin!

c
n

"n

(doubly infinite)



2006-11-16Dan Ellis 7

Approximating Ideal Filters

! Thus, minimum ISE causal

approximation to an ideal lowpass
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Gibbs Phenomenon

! Truncated ideal filters have Gibbs’ Ears:

Increasing filter length

" narrower ears

(reduces ISE)

but height the same

" not optimal by 

minimax criterion

(11% overshoot)
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Where Gibbs comes from

! Truncation of hd[n] to 2M+1 points is

multiplication by a rectangular window:

! Multiplication in time domain is

convolution in frequency domain:
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Where Gibbs comes from

! Thus, FR of truncated response

is convolution of ideal FR

and FR of rectangual window (pdc.sinc):

Hd(e
j!) DTFT{wR[n]}

periodic sinc...

Ht(e
j!)

sin Nx
sin x
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Where Gibbs comes from

! Rectangular window:

! Mainlobe width

(% 1/L) determines

transition band

! Sidelobe height

determines ripples
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2.  Window Shapes for Filters

! Windowing (infinite) ideal response

" FIR filter:

! Rectangular window has best ISE error

! Other “tapered windows” vary in:

! mainlobe " transition band width

! sidelobes " size of ripples near transition

! Variety of ‘classic’ windows...
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� 

0.42 + 0.5cos(2! n

2M +1)

+0.08cos(2! 2n
2M +1)

Window Shapes for FIR Filters

! Rectangular:

! Hann:

! Hamming:

! Blackman:
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Window Shapes for FIR Filters
! Comparison on dB scale:

 2$ 
2M+1
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Adjustable Windows

! So far, discrete main-sidelobe tradeoffs..

! Kaiser window = parametric, continuous

tradeoff:

! Empirically, for min. SB atten. of ' dB:
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Windowed Filter Example

! Design a 25 point FIR low-pass filter

with a cutoff of 600 Hz (SR = 8 kHz)

! No specific transition/ripple req’s

" compromise: use Hamming window

! Convert the frequency to

radians/sample:

!
2$

8 kHz
$

4 kHz
0.15 $
600 Hz

H(ej!)

� 

!
c

= 600

8000
" 2# = 0.15#
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Windowed Filter Example

1. Get ideal filter impulse response:

2. Get window:

Hamming @ N = 25 " M = 12  (N = 2M+1)

3. Apply window:
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Freq. Resp. (FR) Arithmetic

! Ideal LPF has pure-real FR i.e.

((!) = 0, H(ej!) = |H(ej!)|

" Can build piecewise-constant FRs by

combining ideal responses, e.g. HPF:
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3. Iterative FIR Filter Design

! Can derive filter coefficients by

iterative optimization:

! Gradient descent / nonlinear optimiz’n

Filter coefs
h[n]

Goodness of fit

criterion

" error +

Estimate 

derivatives

,+/,h[n]

Update filter

to reduce +

Desired
response

H(ej!)
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Error Criteria

� 

! = W "( ) # D e
j"( ) $H e

j"( )[ ]"%R&
p

d"
error

measurement
region

error
weighting

desired
response

actual
response

exponent:
2 " least sq
* " minimax

= W(!)·[D(ej!) – H(ej!)]



2006-11-16Dan Ellis 21

Minimax FIR Filters

! Iterative design of FIR filters with:

! equiripple (minimax criterion)

! linear-phase

" symmetric IR h[n] = (–)h[-n]

! Recall, symmetric FIR filters have FR

   with pure-real

i.e. combo of cosines of multiples of !

n
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Minimax FIR Filters

! Now, cos(k!) can be expressed as a

polynomial in cos(!)k and lower powers

! e.g. cos(2!) = 2(cos!)2 - 1

!  Thus, we can find '’s such that

! '[k]s are simply related to a[k]s

� 

˜ H !( ) = " k[ ] cos!( )
k

k=0

M

# Mth order 
polynomial in cos!
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Minimax FIR Filters

! An Mth order polynomial has at most

M - 1 maxima and minima:

     has at most M-1 min/max (ripples)
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! Key ingredient to Parks-McClellan:

             is the unique, best, weighted-
minimax order 2M approx. to D(ej!)

!          has at least M+2 “extremal” freqs

     over ! subset R

! error magnitude is equal at each extremal:

! peak error alternates in sign:

Alternation Theorum
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Alternation Theorum

! Hence, for a frequency response:

! If +(!) reaches a peak

error magnitude + at

some set of extremal

frequences !i

! And the sign of the peak

error alternates

! And we have at least
M+2 of them

! Then optimal minimax
(10th order filter, M = 5)
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Alternation Theorum

! By Alternation Theorum,
M+2 extrema of alternating signs

& optimal minimax filter

! But           has at most M-1 extrema

& need at least 3 more from band edges

! 2 bands give 4 band edges

& can afford to “miss” only one

! Alternation rules out transition band

edges, thus have 1 or 2 outer edges

� 

˜ H !( )
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Alternation Theorum
! For M = 5 (10th order):

! 8 extrema (M+3,

4 band edges)

- great!

! 7 extrema (M+2,

3 band edges)

 - OK!

! 6 extrema (M+1,

only 2 transition

band edges)

" NOT OPTIMAL

2006-11-16Dan Ellis 28

Parks-McClellan Algorithm

! To recap:

! FIR CAD constraints

    D(ej!), W(!) " +(!)

! Zero-phase FIR

    H(!) = .k'kcosk! " M-1 min/max

! Alternation theorum

    optimal " "M+2 pk errs, alter’ng sign

! Hence, can spot ‘best’ filter when we

see it – but how to find it?

~
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Parks-McClellan Algorithm

! Alternation " [H(!)-D(!)]/W(!) must =

±+ at M+2 (unknown) frequencies {!i}...

! Iteratively update h[n] with

Remez exchange algorithm:

! estimate/guess M+2 extremals {!i}

! solve for '[n], + ( " h[n] )

! find actual min/max in +(!) " new {!i}

! repeat until |+(!i)| is constant

! Converges rapidly!

~ ~
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Parks-McClellan Algorithm

! In Matlab,

>> h=remez(10, [0 0.4 0.6 1],

         [1 1 0 0],

  [1 2]);

filter order (2M) band edges ÷ $

desired magnitude
at band edges error weights

per band


