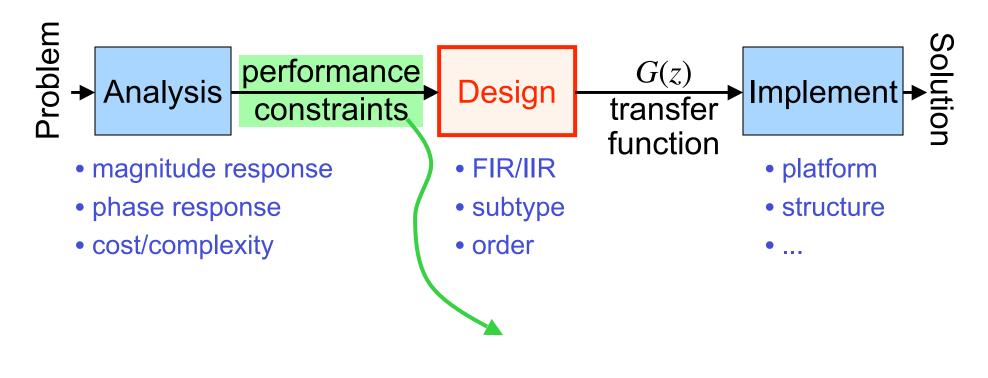
ELEN E4810: Digital Signal Processing Topic 8: Filter Design: IIR

- 1. Filter Design Specifications
- 2. Analog Filter Design
- 3. Digital Filters from Analog Prototypes

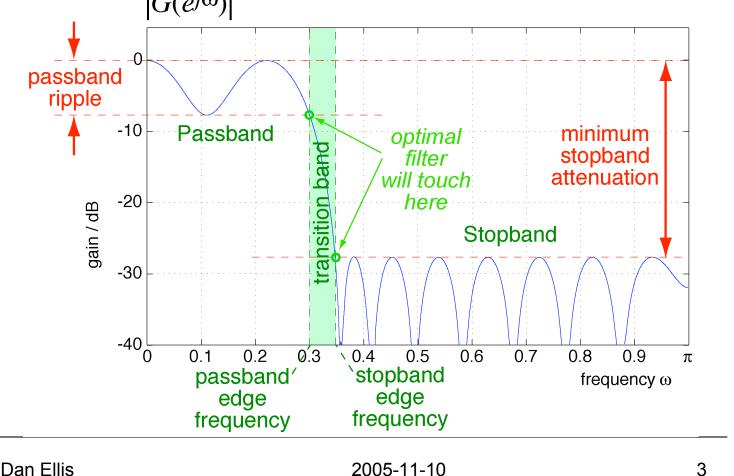
1. Filter Design Specifications

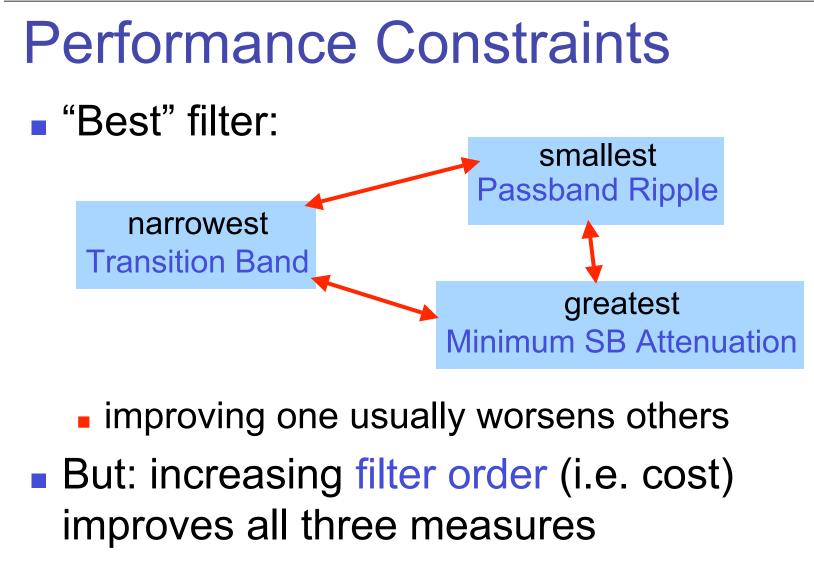
The filter design process:

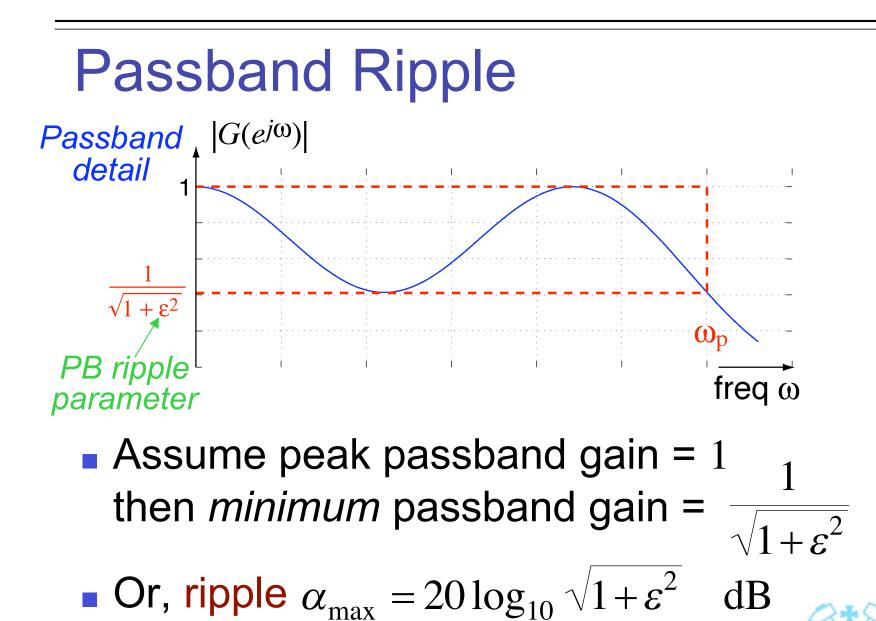


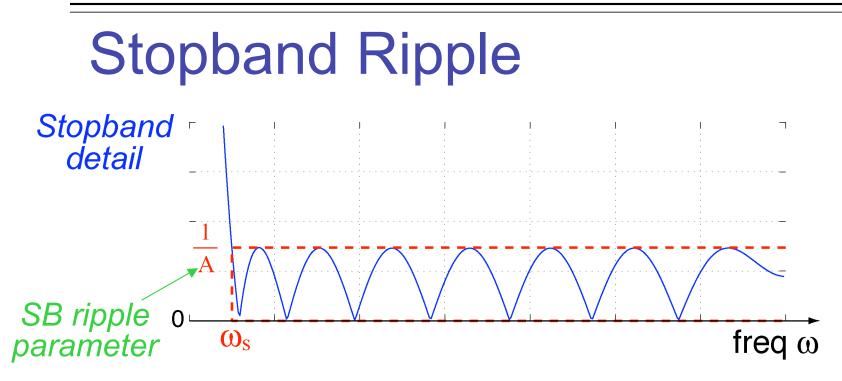
Performance Constraints

... in terms of magnitude response: $|G(e^{j\omega})|$









- Peak passband gain is A× larger than peak stopband gain
- Hence, minimum stopband attenuation $\alpha_s = -20 \log_{10} \frac{1}{A} = 20 \log_{10} A$ dB

Filter Type Choice: FIR vs. IIR

- No feedback (just zeros)
- Always stable
- Can be linear phase
- BUT High order (20-2000)
 - Unrelated to continuoustime filtering

- Feedback (poles & zeros)
- May be unstable
- Difficult to control phase
- Typ. < 1/10th
 order of FIR (4-20)
- Derive from analog prototype

FIR vs. IIR

- If you care about computational cost
 → use low-complexity IIR
 (computation no object → Lin Phs FIR)
- If you care about phase response
 → use linear-phase FIR
 - (phase unimportant \rightarrow go with simple IIR)

IIR Filter Design

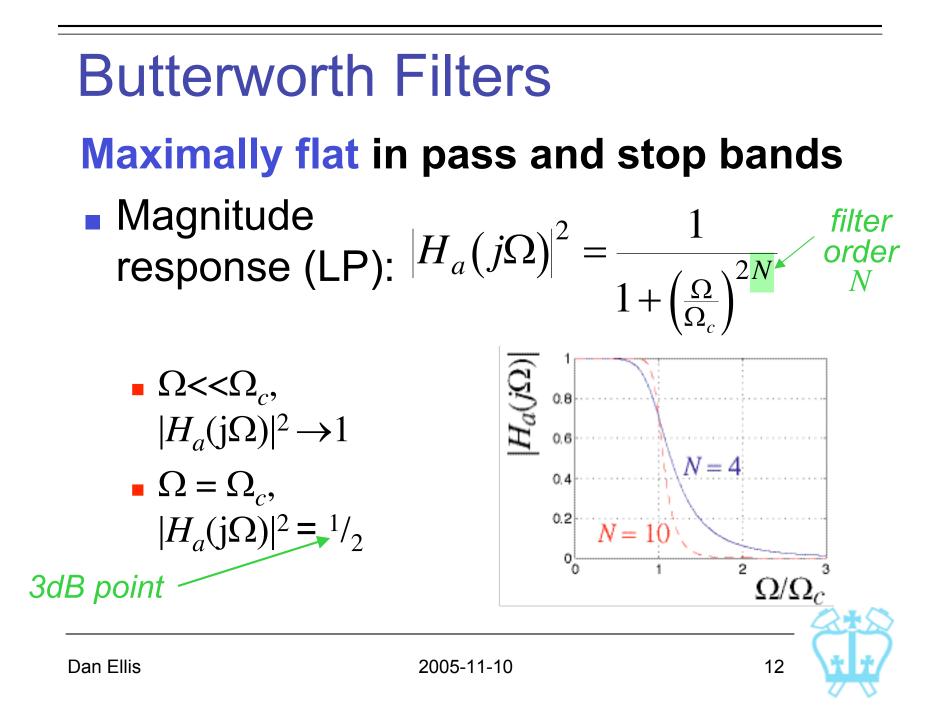
- IIR filters are directly related to analog filters (continuous time)
 - via a mapping of H(s) (CT) to H(z) (DT) that preserves many properties
- Analog filter design is sophisticated
 - signal processing research since 1940s
- → Design IIR filters via *analog prototype*
 - hence, need to learn some CT filter design

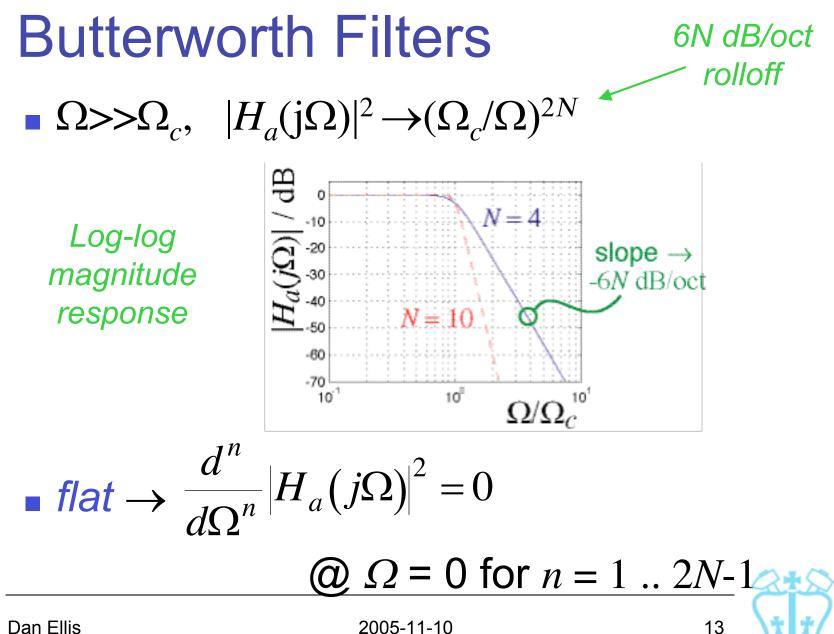
2. Analog Filter Design

- Decades of analysis of transistor-based filters – sophisticated, well understood
- Basic choices:
 - ripples vs. flatness in stop and/or passband
 - \blacksquare more ripples \rightarrow narrower transition band

Family	PB	SB
Butterworth	flat	flat
Chebyshev I	ripples	flat
Chebyshev II	flat	ripples
Elliptical	ripples	ripples

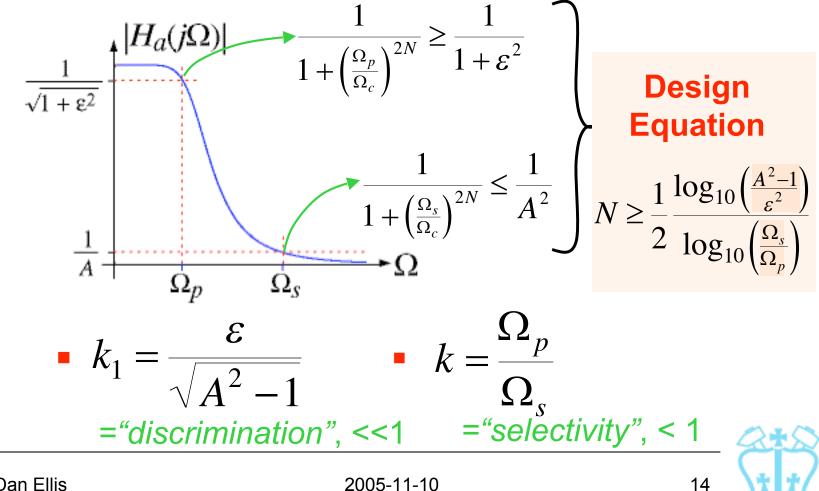
CT Transfer Functions Analog systems: s-transform (Laplace) Continuous-time Discrete-time $H_a(s) = \int h_a(t) e^{-st} dt$ $H_d(z) = \sum h_d[n] z^{-n}$ Transform $H_d(e^{j\omega})$ Frequency $H_a(j\Omega)$ response $AIm{z}$ $Im{s}$ ρjω jΩ Pole/zero $\operatorname{Re}\{z\}$ $\operatorname{Re}\{s\}$ diagram stable *s*-plane stable z-plane poles poles Dan Ellis 2005-11-10 11





Butterworth Filters

How to meet design specifications?



• $|H_a(j\Omega)|^2 = \frac{1}{1 + (\frac{\Omega}{\Omega_c})^{2N}}$ but what is $H_a(s)$?

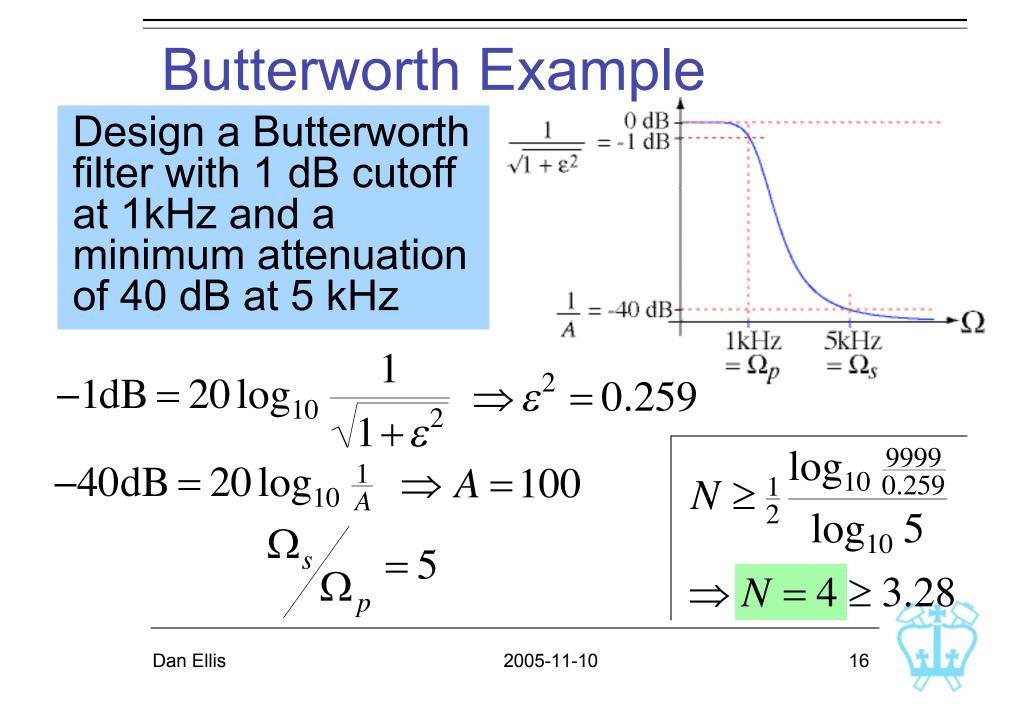
Traditionally, look it up in a table

• calculate $N \rightarrow$ normalized filter with $\Omega_c = 1$

• scale all coefficients for desired Ω_c

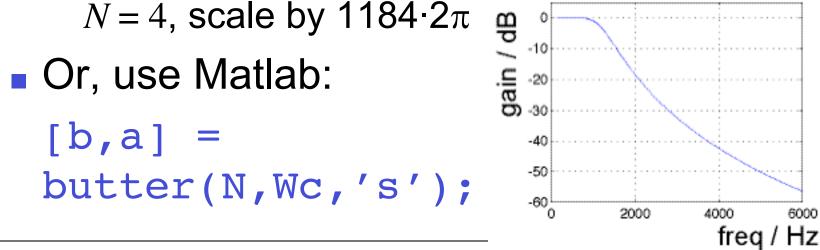
In fact,
$$H_a(s) = \frac{1}{\prod_i (s - p_i)}$$

where $p_i = \Omega_c e^{j\pi \frac{N+2i-1}{2N}}$ $i = 1..N$



Butterworth Example

- Order N = 4 will satisfy constraints; What are Ω_c and filter coefficients?
 - from a table, $\Omega_{-1dB} = 0.845$ when $\Omega_c = 1$ $\Rightarrow \Omega_c = 1000/0.845 = 1.184$ kHz
 - from a table, get normalized coefficients for



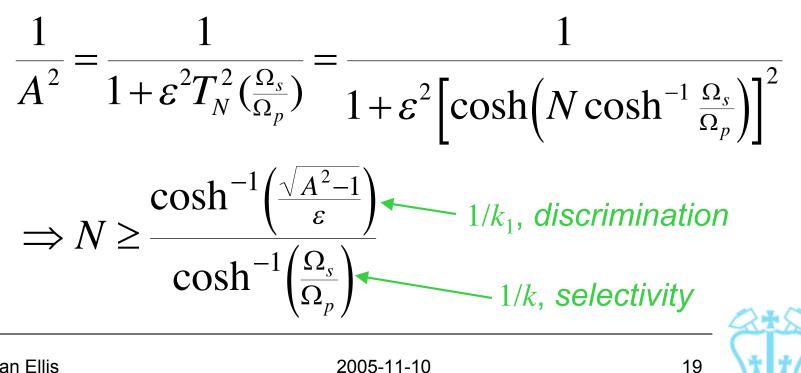
Chebyshev I Filter

■ Equiripple in passband (flat in stopband) → minimize maximum error

Chebyshev I Filter

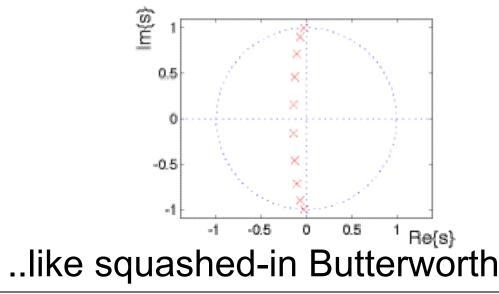
- Design procedure:
 - desired passband ripple $\rightarrow \varepsilon$

• min. stopband atten., Ω_p , $\Omega_s \rightarrow N$:



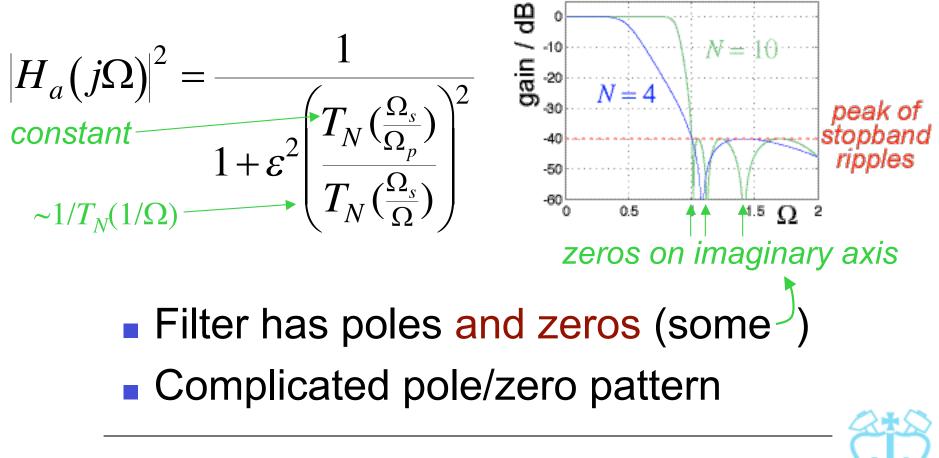
Chebyshev I Filter

- What is $H_a(s)$?
 - complicated, get from a table
 - or from Matlab cheby1(N,r,Wp,'s')
 - all-pole; can inspect them:



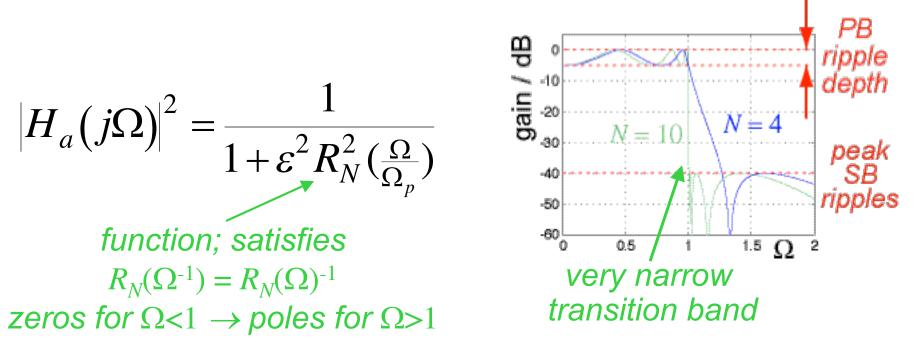
Chebyshev II Filter

Flat in passband, equiripple in stopband

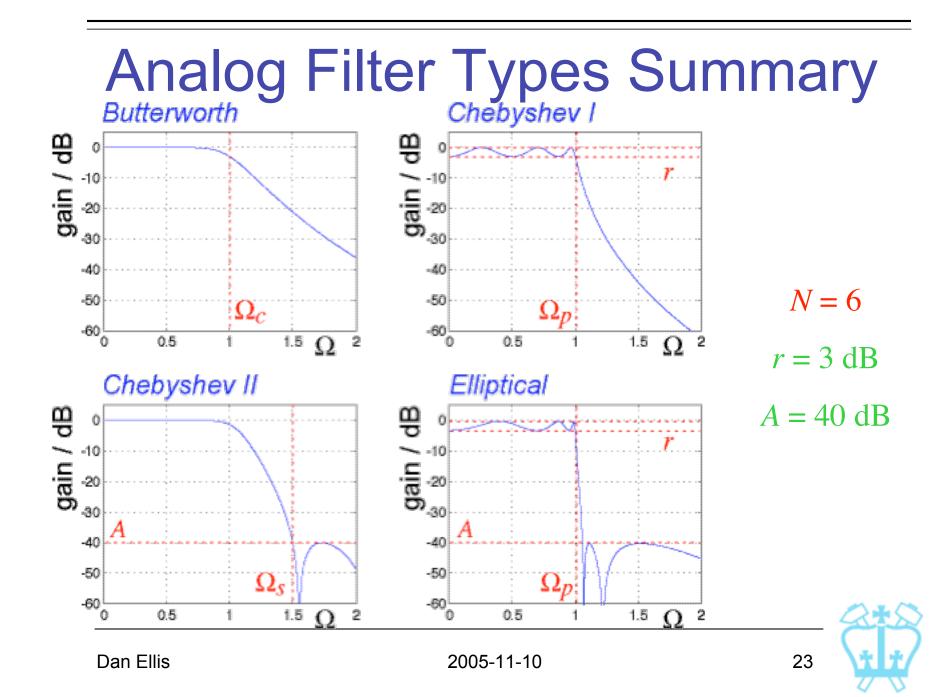


Elliptical (Cauer) Filters

Ripples in both passband and stopband



Complicated; not even closed form for N



Analog Filter Transformations

All filters types shown as lowpass; other types (highpass, bandpass..) derived via transformations

• i.e.
$$\hat{s} = F^{-1}(s)$$

lowpass
brototype $H_{LP}(s) \rightarrow H_D(\hat{s})$
Desired alternate
response; still a
rational polynomial

General mapping of s-plane BUT keep $j\Omega \rightarrow j\Omega$; frequency response just 'shuffled'

24

p

Lowpass-to-Highpass

Example transformation:

$$H_{HP}(\hat{s}) = H_{LP}(s)\Big|_{s=\frac{\Omega_p\hat{\Omega}_p}{\hat{s}}}$$

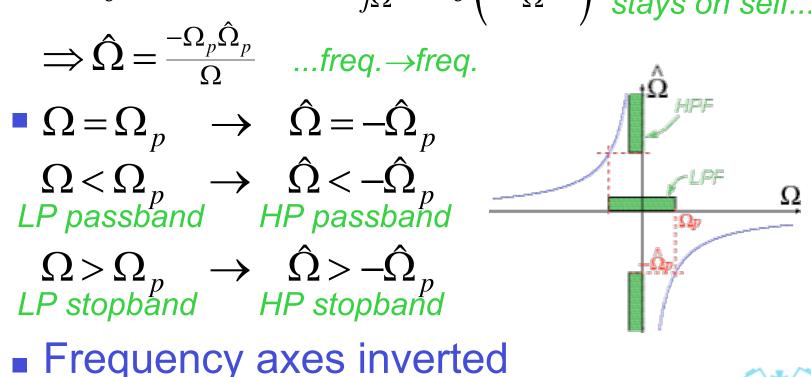
• take prototype $H_{LP}(s)$ polynomial

• replace s with $\underline{\Omega_p \hat{\Omega}_p}$

 \rightarrow new polynomial $H_{HP}(s)$

Lowpass-to-Highpass

• What happens to frequency response? $s = j\Omega \implies \hat{s} = \frac{\Omega_p \hat{\Omega}_p}{j\Omega} = j \left(\frac{-\Omega_p \hat{\Omega}_p}{\Omega} \right) \begin{array}{l} \text{imaginary axis} \\ \text{stays on self...} \end{array}$

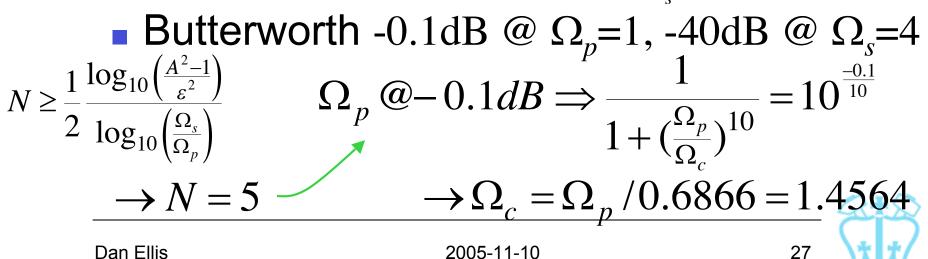


Transformation Example

Design a Butterworth highpass filter with PB edge -0.1dB @ 4 kHz ($\hat{\Omega}_{p}$) and SB edge -40 dB @ 1 kHz (Ω_s)

• Lowpass prototype: make
$$\Omega_p = 1$$

 $\Rightarrow \Omega_s = (-) \frac{\Omega_p \hat{\Omega}_p}{\hat{\Omega}_s} = (-)4$

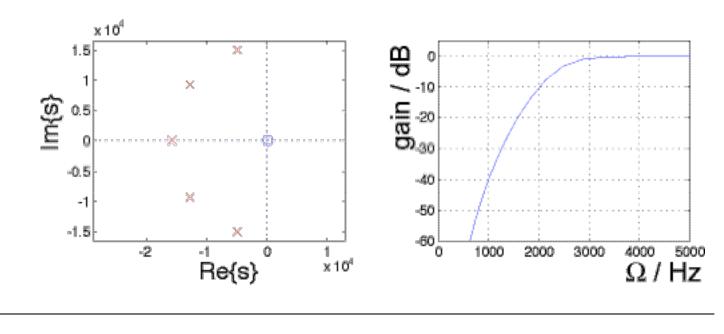


$$\begin{aligned} & \text{Transformation Example} \quad \prod_{c} \sum_{p \in S} \\ & \text{a. LPF proto has } p_{\ell} = \Omega_{c} e^{j\pi \frac{N+2\ell-1}{2N}} \\ & \Rightarrow H_{LP}(s) = \frac{\Omega_{c}^{N}}{\prod_{\ell=1}^{N} (s-p_{\ell})} \end{aligned}$$

$$& \text{Map to HPF: } H_{HP}(\hat{s}) = H_{LP}(s)|_{s} = \frac{\Omega_{p}^{\Omega_{p}}}{\hat{s}} \\ & \Rightarrow H_{HP}(\hat{s}) = \frac{\Omega_{c}^{N}}{\prod_{\ell=1}^{N} \left(\frac{\Omega_{p}\hat{\Omega}_{p}}{\hat{s}} - p_{\ell}\right)} = \frac{\Omega_{c}^{N}\hat{s}^{N} \stackrel{\text{veros}}{\otimes \hat{s} = 0}}{\prod_{\ell=1}^{N} \left(\Omega_{p}\hat{\Omega}_{p} - p_{\ell}\hat{s}\right)} \\ & \text{new poles @ } \hat{s} = \Omega_{p}\hat{\Omega}_{p}/p_{l} \end{aligned}$$

Transformation Example

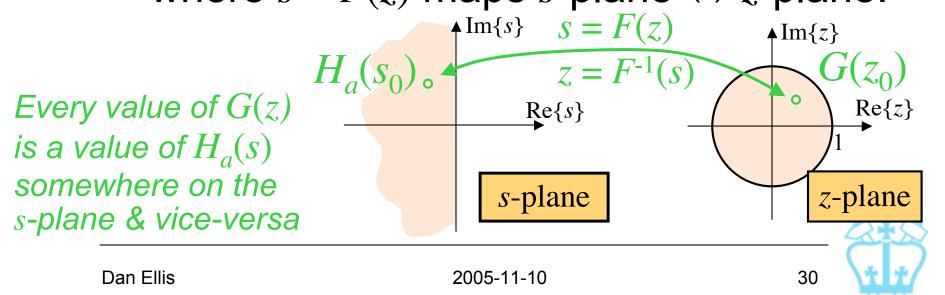
In Matlab: [N,Wc]=buttord(1,4,0.1,40,'s'); [B,A] = butter(N, Wc, 's'); [n,d] = lp2hp(B,A,2*pi*4000);



Dan Ellis

3. Analog Protos \rightarrow IIR Filters

- Can we map high-performance CT filters to DT domain?
- Approach: transformation $H_a(s) \rightarrow G(z)$ i.e. $G(z) = H_a(s)|_{s=F(z)}$ where s = F(z) maps *s*-plane $\leftrightarrow z$ -plane:

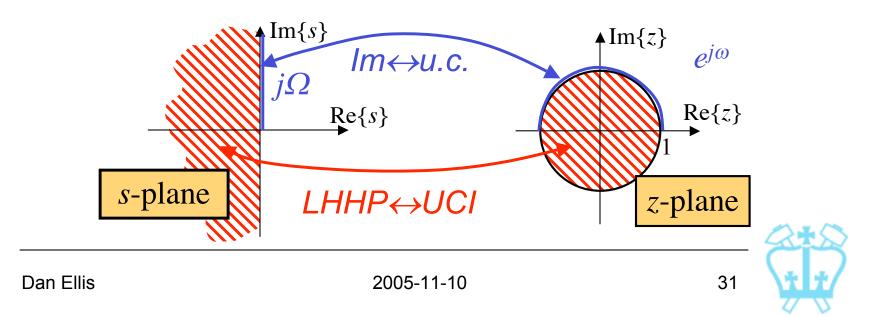


CT to DT Transformation

• Desired properties for s = F(z):

• *s*-plane $j\Omega$ axis $\leftrightarrow z$ -plane unit circle

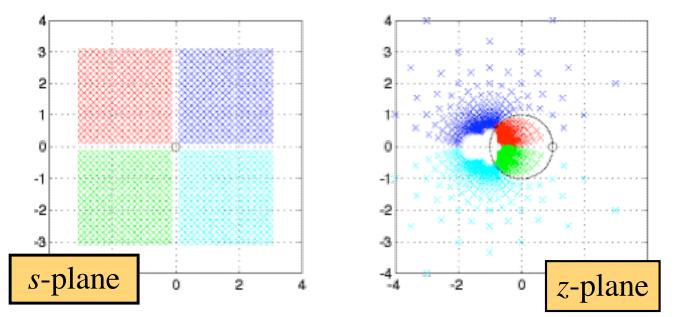
- \rightarrow preserves frequency response values
- s-plane LHHP ↔ z-plane unit circle interior
 → preserves stability of poles



Bilinear Transformation $s = \frac{1-z^{-1}}{1+z^{-1}}$ Bilinear Transform Solution: • Hence inverse: $z = \frac{1+s}{1-s}$ unique, 1:1 mapping • Freq. axis? $s = j\Omega \rightarrow z = \frac{1+j\Omega}{1-j\Omega}$ on unit circle Poles? $s = \sigma + j\Omega \rightarrow z = \frac{(1+\sigma)+j\Omega}{(1-\sigma)-j\Omega}$ $\Rightarrow |z|^{2} = \frac{1+2\sigma+\sigma^{2}+\Omega^{2}}{1-2\sigma+\sigma^{2}+\Omega^{2}} \qquad \sigma < 0$ $\leftrightarrow |z| < 1$ 32 Dan Ellis 2005-11-10

Bilinear Transformation

How can entire half-plane fit inside u.c.?



Highly nonuniform warping!

Bilinear Transformation

• What is CT \leftrightarrow DT freq. relation $\Omega \leftrightarrow \omega$?

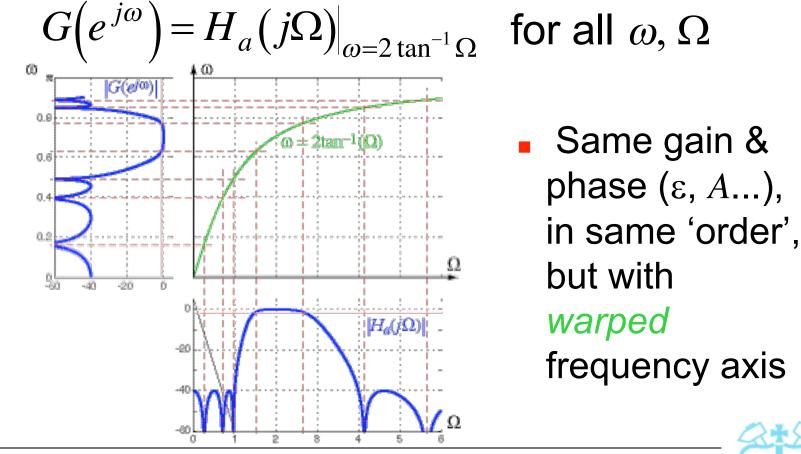
$$z = e^{j\omega} \implies s = \frac{1 - e^{-j\omega}}{1 + e^{-j\omega}} = \frac{2j\sin\omega/2}{2\cos\omega/2} = j\tan\frac{\omega}{2}$$

i.e.
$$\Omega = \tan\left(\frac{\omega}{2}\right)$$
$$\omega = 2\tan^{-1}\Omega$$

infinite range of CT frequency -∞ < Ω < ∞ maps to *finite* DT freq. range -π < ω < π
 nonlinear; d/dωΩ→∞ as ω→π

Frequency Warping

Bilinear transform makes



Design Procedure

Obtain DT filter specs:

• general form (LP, HP...), $\omega_p, \omega_s, \frac{1}{\sqrt{1+\epsilon^2}}, \frac{1}{A}$

$$\Omega_p = \tan \frac{\omega_p}{2} \quad \Omega_s = \tan \frac{\omega_s}{2}$$

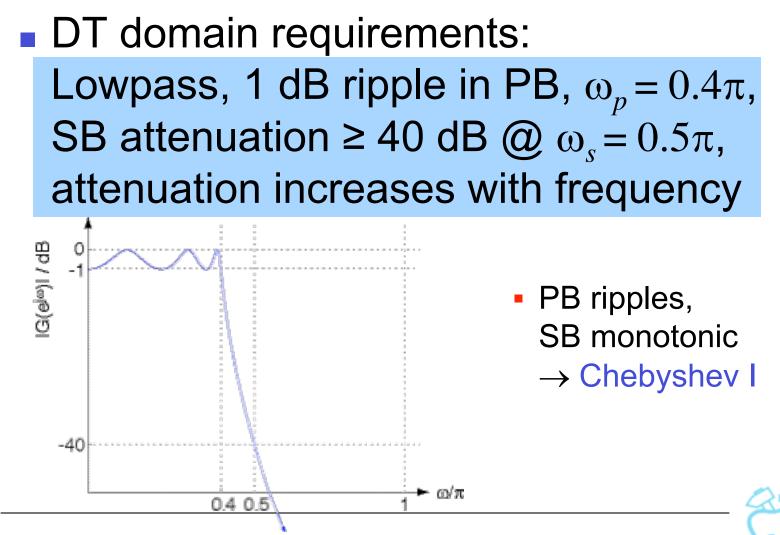
Oldstyle Design analog filter for \$\Omega_p, \Omega_s, \frac{1}{\sqrt{1+\varepsilon^2}}, \frac{1}{A}\$
 \$\omega H_a(s)\$, CT filter polynomial

• Convert to DT domain: $G(z) = H_a(s)|_{s=\frac{1-z^{-1}}{1+z^{-1}}}$

• $\rightarrow G(z)$, rational polynomial in z

Implement digital filter!

Bilinear Transform Example



2005-11-10

37

Dan Ellis

Bilinear Transform Example

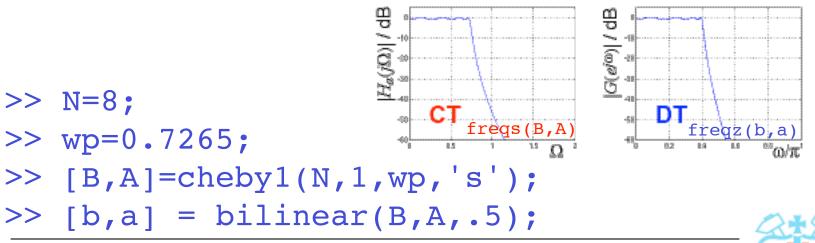
Warp to CT domain: $\Omega_{p} = \tan \frac{\omega_{p}}{2} = \tan 0.2\pi = 0.7265 \text{ rad/sec}$ $\Omega_s = \tan \frac{\omega_s}{2} = \tan 0.25\pi = 1.0$ rad/sec Magnitude specs: 1 dB PB ripple $\Rightarrow \frac{1}{\sqrt{1+e^2}} = 10^{-1/20} = 0.8913 \Rightarrow \varepsilon = 0.5087$ 40 dB SB atten. $\Rightarrow \frac{1}{A} = 10^{-40/20} = 0.01 \Rightarrow A = 100$

Bilinear Transform Example

Chebyshev I design criteria:

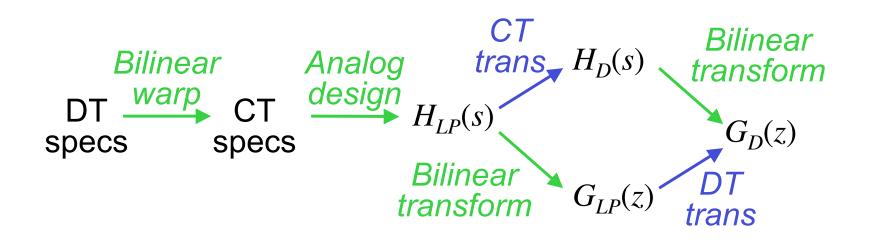
 $N \ge \frac{\cosh^{-1}\left(\frac{\sqrt{A^2 - 1}}{\varepsilon}\right)}{\cosh^{-1}\left(\frac{\Omega_s}{\Omega_p}\right)} = 7.09 \quad \text{i.e. need } N = 8$

Design analog filter, map to DT, check:



Other Filter Shapes

- Example was IIR LPF from LP prototype
- For other shapes (HPF, bandpass,...):



• Transform LP \rightarrow X in CT or DT domain...

DT Spectral Transformations

Same idea as CT LPF \rightarrow HPF mapping, but in *z*-domain:

$$G_D(\hat{z}) = G_L(z)\Big|_{z=F(\hat{z})} = G_L(F(\hat{z}))$$

• To behave well, $z = F(\hat{z})$ should:

■ map u.c. \rightarrow u.c. (preserve $G(e^{j\omega})$ values)

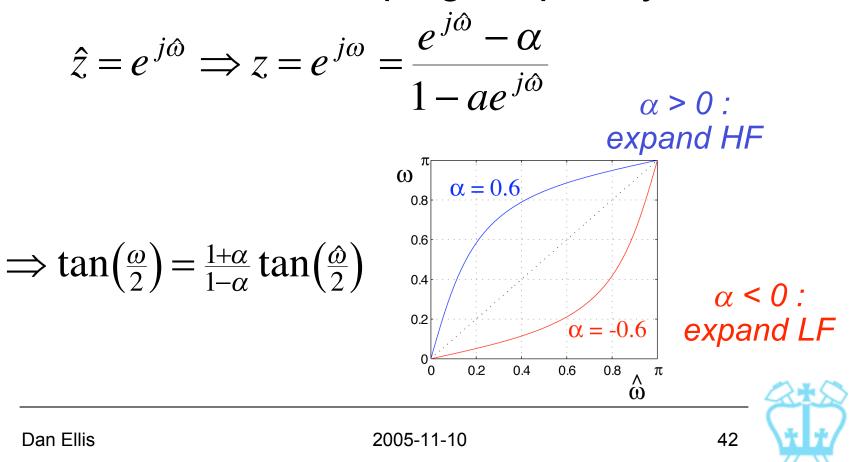
• map u.c. interior \rightarrow u.c. interior (stability)

• i.e.
$$|F(\hat{z})| = 1 \leftrightarrow |\hat{z}| = 1$$
 $|F(\hat{z})| < 1 \leftrightarrow |\hat{z}| < 1$

• in fact, $F(\hat{z})$ matches the definition of an allpass filter ... replace delays with $F(\hat{z})^{-1}$

DT Frequency Warping

Simplest mapping $z = F(\hat{z}) = \frac{\hat{z} - \alpha}{1 - \alpha \hat{z}}$ has effect of warping frequency axis:

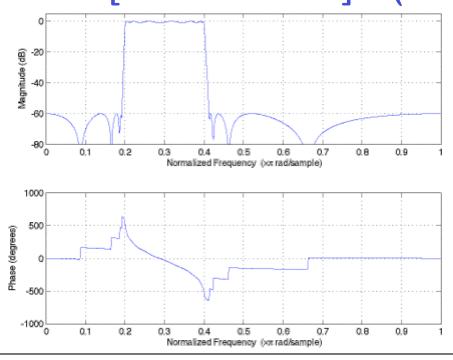


Another Design Example

- Spec:
 - Bandpass, from 800-1600 Hz (SR = 8kHz)
 - Ripple = 1dB, min. stopband atten. = 60 dB
 - 8th order, best transition band
- Use elliptical for best performance
- Full design path:
 - design analog LPF prototype
 - analog LPF \rightarrow BPF
 - CT BPF \rightarrow DT BPF (Bilinear)

Another Design Example

Or, do it all in one step in Matlab:



Dan Ellis

