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ELEN E4810: Digital Signal Processing

Topic 8:
Filter Design: IIR

1. Filter Design Specifications

2. Analog Filter Design

3. Digital Filters from Analog Prototypes
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1. Filter Design Specifications
 The filter design process:

Design ImplementAnalysis

P
ro

bl
em

S
olution

G(z)
transfer
function

performance
constraints

• magnitude response

• phase response

• cost/complexity

• FIR/IIR

• subtype

• order

• platform

• structure

• ...



2005-11-10Dan Ellis 3

Performance Constraints
 .. in terms of magnitude response:
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 “Best” filter:

 improving one usually worsens others

 But: increasing filter order (i.e. cost)
improves all three measures

Performance Constraints

smallest
Passband Ripple

greatest
Minimum SB Attenuation

narrowest
Transition Band
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Passband Ripple

 Assume peak passband gain = 1
then minimum passband gain =

 Or, ripple

� 

1
1+2

� 

max = 20 log10 1+2 dB

PB ripple
parameter
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Stopband Ripple

 Peak passband gain is A larger than
peak stopband gain

 Hence, minimum stopband attenuation

SB ripple
parameter

� 

s = 20 log10 1A = 20 log10 A dB
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Filter Type Choice: FIR vs. IIR
FIR

 No feedback
(just zeros)

 Always stable
 Can be

linear phase

 High order
(20-2000)

 Unrelated to
continuous-
time filtering

IIR
 Feedback

(poles & zeros)
 May be unstable
 Difficult to control

phase

 Typ. < 1/10th
order of FIR (4-20)

 Derive from
analog prototype

BUT
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FIR vs. IIR
 If you care about computational cost
 use low-complexity IIR
(computation no object  Lin Phs FIR)

 If you care about phase response
 use linear-phase FIR
(phase unimportant  go with simple IIR)
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IIR Filter Design
 IIR filters are directly related to

analog filters (continuous time)
 via a mapping of H(s) (CT) to H(z) (DT) that

preserves many properties

  Analog filter design is sophisticated
 signal processing research since 1940s

 Design IIR filters via analog prototype

 hence, need to learn some CT filter design
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2. Analog Filter Design
 Decades of analysis of transistor-based

filters – sophisticated, well understood

 Basic choices:
 ripples vs. flatness in stop and/or passband
 more ripples  narrower transition band

ripplesripplesElliptical

ripplesflatChebyshev II

flatripplesChebyshev I

flatflatButterworth

SBPBFamily
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CT Transfer Functions
 Analog systems: s-transform (Laplace)

Continuous-time Discrete-time

� 

Ha s( ) = ha t( )estdt

� 

Hd z( ) = hd n[ ]znTransform

Frequency
response

Pole/zero
diagram

� 

Ha j( )

� 

Hd e
j( )

s-plane

Re{s}

Im{s}

j

stable
poles

stable
poles

z-plane

Re{z}

Im{z}

1

ej
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Maximally flat in pass and stop bands

 Magnitude
response (LP):

 <<c,
|Ha(j)|2 1

  = c,
|Ha(j)|2 = 1/2

Butterworth Filters

� 

Ha j( ) 2 = 1

1+ 
c

( )2N
filter
order

N

3dB point
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Butterworth Filters
 >>c,   |Ha(j)|2 (c/)2

 flat  

@  = 0 for n = 1 .. 2N-1

� 

d n

dn Ha j( ) 2 = 0

Log-log
magnitude
response

6N dB/oct
rolloff



2005-11-10Dan Ellis 14

Butterworth Filters
 How to meet design specifications?

  

    

� 

1

1+  p
c( )2N


1

1+  2

  

� 

1
1+ s

c( )2N

1
A2

� 

k1 = 
A2 1

=“discrimination”, <<1

� 

k =
 p

s
=“selectivity”, < 1
� 

N  1
2
log10 A 21

 2( )
log10

s
p( )

Design
Equation
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Butterworth Filters
         but what is Ha(s)?

 Traditionally, look it up in a table

 calculate N  normalized filter with c = 1
 scale all coefficients for desired c

 In fact,

where

� 

Ha j( ) 2 = 1
1+ ( c

)2N

� 

Ha s( ) = 1
s  pi( )

i

� 

pi =ce
j N +2 i1

2N i =1..N
s-plane

Re{s}

Im{s}
c






� 

s
c

 

 
 

 

 
 
2N

= 1
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Butterworth Example

� 

1dB = 20 log10
1
1+2

� 

2 = 0.259

� 

40dB = 20 log10 1A

� 

 A =100

Design a Butterworth
filter with 1 dB cutoff
at 1kHz and a
minimum attenuation
of 40 dB at 5 kHz

� 

s
 p

= 5

� 

N  1
2
log10 99990.259

log10 5
 N = 4  3.28
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Butterworth Example
 Order N = 4 will satisfy constraints;

What are c and filter coefficients?
 from a table, -1dB = 0.845 when c = 1
 c = 1000/0.845 = 1.184 kHz

 from a table, get normalized coefficients for
N = 4, scale by 1184·2

 Or, use Matlab:

[b,a] =
butter(N,Wc,’s’);

M
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Chebyshev I Filter
 Equiripple in passband (flat in stopband)
 minimize maximum error

� 

Ha j( ) 2 = 1
1+2TN

2 ( p
)

� 

TN ( ) =
cos N cos1( )  1
cosh N cosh1( )  >1

 
 
 

  

Chebyshev
polynomial
of order N
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Chebyshev I Filter
 Design procedure:

 desired passband ripple  
 min. stopband atten., p, s  N :

� 

1
A2 = 1

1+ 2TN
2 (s

 p
)

= 1

1+ 2 cosh N cosh1 s
 p( )[ ]2

� 

 N 
cosh1 A 21

( )
cosh1 s

p( )
1/k1, discrimination

1/k, selectivity
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Chebyshev I Filter
 What is Ha(s)?

 complicated, get from a table

 .. or from Matlab cheby1(N,r,Wp,’s’)

 all-pole; can inspect them:

..like squashed-in Butterworth
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Chebyshev II Filter
 Flat in passband, equiripple in stopband

 Filter has poles and zeros (some  )

 Complicated pole/zero pattern� 

Ha j( ) 2 = 1

1+2
TN (

s
p
)

TN (
s
 )

 

 
 
 

 

 
 
 

2

zeros on imaginary axis

constant

~1/TN(1/)
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Elliptical (Cauer) Filters
 Ripples in both passband and stopband

 Complicated; not even closed form for 

very narrow 
transition band

� 

Ha j( ) 2 = 1
1+2RN

2 ( p
)

function; satisfies
RN(-1) = RN()-1

zeros for <1  poles for >1
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Analog Filter Types Summary

N = 6

r = 3 dB

A = 40 dB
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Analog Filter Transformations
 All filters types shown as lowpass;

other types (highpass, bandpass..)
derived via transformations

 i.e.

 General mapping of s-plane
BUT keep j  j;
frequency response just ‘shuffled’

� 

HLP s( )
ˆ s = F1 s( )

 HD ˆ s ( )

Desired alternate
response; still a
rational polynomial

lowpass
prototype

^
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Lowpass-to-Highpass
 Example transformation:

 take prototype HLP(s) polynomial

 replace s with

 simplify and rearrange
 new polynomial HHP(s)

� 

H HP ˆ s ( ) = HLP s( ) s=
p

ˆ  p
ˆ s 

� 

 p ˆ  p
ˆ s 

^



2005-11-10Dan Ellis 26

Lowpass-to-Highpass
 What happens to frequency response?



 Frequency axes inverted

� 

s = j  ˆ s = p
ˆ  p

j = j p
ˆ  p

( )

� 

 ˆ  = p
ˆ  p



� 

 = p  ˆ  =  ˆ  p

� 

 < p  ˆ  <  ˆ  p
LP passband HP passband

� 

 > p  ˆ  >  ˆ  p
LP stopband HP stopband

imaginary axis
stays on self...

...freq.freq.
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Transformation Example
Design a Butterworth highpass filter
with PB edge -0.1dB @ 4 kHz (p)
and SB edge -40 dB @ 1 kHz (s)

 Lowpass prototype: make p = 1

 Butterworth -0.1dB @ p=1, -40dB @ s=4

^
^

� 

s = ( )p
ˆ  p

ˆ  s
= ( )4

� 

N  1
2
log10 A 21

 2( )
log10

s
p( )

� 

 N = 5

� 

 p@ 0.1dB
1

1+ (p

c
)10

=10
0.1
10

� 

c = p /0.6866 =1.4564
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Transformation Example
 LPF proto has

 Map to HPF:

  

� 

pl =ce
j N +2l1

2N Re{s}

Im{s}
c






    

� 

 HLP s( ) =
 c

N

s  pl( )
l=1
N

� 

H HP ˆ s ( ) = HLP s( ) s=
p

ˆ  p
ˆ s 

  

� 

 H HP ˆ s ( ) = c
N

p
ˆ  p

ˆ s  pl( )l=1

N
= c

N ˆ s N

 p ˆ  p  pl ˆ s ( )
l=1

N

N zeros
@ s = 0^

new poles @ s = pp/pl
^ ^
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Transformation Example
 In Matlab:
[N,Wc]=buttord(1,4,0.1,40,'s');
[B,A] = butter(N, Wc, 's');
[n,d] = lp2hp(B,A,2*pi*4000);

p   s     Rp        Rs
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3. Analog Protos  IIR Filters
 Can we map high-performance CT

filters to DT domain?

 Approach:  transformation Ha(s)G(z)
i.e.
where s = F(z) maps s-plane  z-plane:

� 

G z( ) = Ha s( ) s=F z( )

s-plane

Re{s}

Im{s}

z-plane

Re{z}

Im{z}

1

Ha(s0) G(z0)
Every value of G(z)
is a value of Ha(s)
somewhere on the 
s-plane & vice-versa

s = F(z)
z = F-1(s)
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CT to DT Transformation
 Desired properties for s = F(z):

 s-plane j axis  z-plane unit circle
 preserves frequency response values

 s-plane LHHP  z-plane unit circle interior
 preserves stability of poles

s-plane

Re{s}

Im{s}

j

z-plane

Re{z}

Im{z}

1

ej

LHHPUCI

Imu.c.
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Bilinear Transformation
 Solution:

 Hence inverse:

 Freq. axis?

 Poles?

� 

s =1 z
1

1+ z1
Bilinear

Transform

� 

z = 1+ s
1 s

unique, 
1:1 mapping

� 

s = j  z = 1+ j
1 j

|z| = 1 i.e.
on unit circle

� 

s = + j  z = 1+( )+ j
1( ) j

� 

 z 2 = 1+ 2 + 2 +2

1 2 + 2 +2
< 0 
 |z| < 1
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Bilinear Transformation
 How can entire half-plane fit inside u.c.?

 Highly nonuniform warping!

s-plane z-plane
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Bilinear Transformation
 What is CTDT freq. relation  ?

 i.e.

 infinite range of CT frequency
maps to finite DT freq. range

 nonlinear;    as   

� 

z = e j  s = 1e j
1+e j

= 2 j sin /2
2 cos /2 = j tan 2

u.circle im.axis

    

� 

 = tan 
2( )

 = 2 tan1

� 

< <

� 

 < < 

� 

d
d pack it all in!
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Frequency Warping
 Bilinear transform makes

  for all , 

� 

G e j( ) = Ha j( )=2 tan1

  Same gain & 
   phase (, A...),
   in same ‘order’, 
   but with 
   warped 
   frequency axis
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Design Procedure
 Obtain DT filter specs:

 general form (LP, HP...),

 ‘Warp’ frequencies to CT:


 Design analog filter for
   Ha(s), CT filter polynomial

 Convert to DT domain:
   G(z), rational polynomial in z

 Implement digital filter!

� 

 p , s, 1
1+ 2
, 1A

� 

 p = tan  p

2

� 

s = tan  s
2

� 

 p ,s, 1
1+ 2
, 1A

� 

G z( ) = Ha s( ) s=1z1
1+z1

Old-
style
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Bilinear Transform Example
 DT domain requirements:

Lowpass, 1 dB ripple in PB, p = 0.4,
SB attenuation ≥ 40 dB @ s = 0.5,
attenuation increases with frequency

PB ripples,
SB monotonic
 Chebyshev I
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Bilinear Transform Example
 Warp to CT domain:

 Magnitude specs:
1 dB PB ripple

40 dB SB atten.

� 

 p = tan  p

2 = tan 0.2 = 0.7265 rad/sec

� 

s = tan  s
2 = tan 0.25 =1.0  rad/sec

� 

 1
1+ 2

=101/20 = 0.8913 = 0.5087

� 

 1
A =1040 /20 = 0.01 A =100
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Bilinear Transform Example
 Chebyshev I design criteria:

 Design analog filter, map to DT, check:

� 

N 
cosh1 A 21

( )
cosh1 s

p( )
= 7.09 i.e. need N = 8

>> N=8;
>> wp=0.7265;
>> [B,A]=cheby1(N,1,wp,'s');
>> [b,a] = bilinear(B,A,.5);

M

freqs(B,A) freqz(b,a)
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Other Filter Shapes
 Example was IIR LPF from LP prototype

 For other shapes (HPF, bandpass,...):

 Transform LPX in CT or DT domain...

DT
specs

CT
specs

HLP(s)

HD(s)

GLP(z)

GD(z)

Bilinear
warp

Analog
design

CT
trans

DT
trans

Bilinear
transform

Bilinear
transform
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DT Spectral Transformations
 Same idea as CT LPFHPF mapping,

but in z-domain:

 To behave well,               should:
 map u.c.  u.c. (preserve G(ej) values)

 map u.c. interior  u.c. interior (stability)

 i.e.
 in fact,          matches the definition of an

allpass filter ... replace delays with

� 

z = F ˆ z ( )

� 

GD ˆ z ( ) = GL z( ) z=F ˆ z ( ) = GL F ˆ z ( )( )

� 

F ˆ z ( ) =1 ˆ z =1

� 

F ˆ z ( ) < 1 ˆ z < 1

� 

F ˆ z ( )

� 

F ˆ z ( )1
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DT Frequency Warping
 Simplest mapping

has effect of warping frequency axis:

� 

z = F ˆ z ( ) = ˆ z 
1ˆ z 

� 

ˆ z = e j ˆ   z = e j = e j ˆ  
1 ae j ˆ  

� 

 tan 
2( ) = 1+

1 tan ˆ  
2( )

 > 0 :
expand HF

 < 0 :
expand LF
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Another Design Example
 Spec:

 Bandpass, from 800-1600 Hz (SR = 8kHz)

 Ripple = 1dB, min. stopband atten. = 60 dB

 8th order, best transition band

 Use elliptical for best performance

 Full design path:
 design analog LPF prototype

 analog LPF  BPF

 CT BPF  DT BPF (Bilinear)
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Another Design Example
 Or, do it all in one step in Matlab:
[b,a] = ellip(8,1,60,

  [800 1600]/(8000/2));


