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Distributed Training
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https://www.anyscale.com/blog/
what-is-distributed-training

https://learn.microsoft.com/en-us/azure/machine-
learning/concept-distributed-training?view=azureml-api-2

Distributed Training is to execute Machine Learning or Deep Learning tasks into subtasks run on multiple parallel machines.

https://www.anyscale.com/blog/what-is-distributed-training
https://www.anyscale.com/blog/what-is-distributed-training
https://learn.microsoft.com/en-us/azure/machine-learning/concept-distributed-training?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/concept-distributed-training?view=azureml-api-2


Distribution Training Speed
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Training Speed is proportional to speed of single device x quantity of devices x speed up of multi-devices

• Speed of Single Device:
• Single Chip speed
• Data I/O speed

• Hybrid Precision Training
• Computational Fusion
• Gradient Addition

• Quantity of Devices:
• Depending on the communication of 

devices

• Multi-device acceleration:
• Combining algorithm and network 

topology



Training Time and Device Comparisons
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• GPT-3: Nvidia V100 GPU
• OPT: 

• 992 Nvidia A100 80GB GPU
• Fully Sharded Data Parallel
• Megatron-LM Tensor Parallelism
• 2 months

• BLOOM:
• 384 GPU ➔ 48 x 8 Nvidia A100 80GB GPU
• Using 4 x NVLink for GPU internal communications
• Using 4 Omni-Path 100GBps card for enhanced 8-dim communication
• 3.5 months

• Llama:
• Nvidia A100 80GB GPU
• Llama-7B 82,432 GPU hours
• Llama-13B 135,168 GPU hours
• Llama-33B 530,432 GPU hours
• Llama-65B 1,022,362 GPU hours



Hardware Computational Challenges
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• Computational Wall:
• Nvidia H100 SXM (March 2022): FP 16 -> 2000 TFLOPS (Floating Point Operations per Second)
• GPT-3 needs 314 ZFLOPS

• Memory Wall:
• GPT-3 uses 175B parameters
• Using FP32, it needs 700GB
• However, H100 GPU has only 80GB memory

• Communication Wall:
• GPT-3 if using 128 epoch, then each iteration needs to transmit 89.6 TB.
• However, InfiniBand link provides less than 800Gbps.



Parallelization Strategy
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• Computation is based on Data and Model

• Data are divided into Mini-batch.

• Training system uses mini-batch’s loss function and optimization to modify the parameters

• Execution of LLM multi-layer neural network can be described by a Computational Graph.

• This graph has multiple connected Operations. 

• Each operator executes a Neural Network Lawyer.

• Parameters represents the trained weights.
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Data Parallelism
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• Every device has a Model Replica 
of the entire neural network 

• In each iteration, each device 
only process a subset of a mini-
batch.

• Using this data for forward 
computation

• Each local Gi propagates its 
result to all devices

• All devices combine all new Gi, 
and use the average to update 
the model

Device 1

Device 2



Data Parallelism – Global Batch Size Per Second

EECS 6895 ADV. BIG DATA AND AI        COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 8

Data
Partition 1

O
p

erato
r 1

O
p

erato
r 2

O
p

erato
r 3

Gradient 1 Gradient 2 Gradient 3

O
p

erato
r 1

O
p

erato
r 2

O
p

erato
r 3

Gradient 1 Gradient 2 Gradient 3

Data

Data
Partition 2

Data

Network 
Communications

• Synchronized computation of all 
devices’ gradient computations at the 
backward  computation.

• Make sure all devices get the average 
of gradients.

• Usual strategies include:
• Tensor Flow Distributed Strategy
• PyTorch Distrubted
• Horovod Distributed Optimzer

• Pros: data are parallelized. Each 
computation is relative independent.

• Cons: each device has a backup of the 
whole model. Requires more memory
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Device 2



Model Parallelism
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Data Operator 1• Inter-operator Parallelism a.k.a. 
Pipeline Parallelism

• Intra-operator Parallelism, a.k.a. 
Tensor Parallelism

• E.g.: GPT-3 has 175B parameter.
• If each parameter uses 32 FP 
➔ 700GB memory

• If each parameter uses 16 FP 
➔ 350GB memory

• However, H100 only supports 
80GB memory
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Pipeline Parallelism challenge - Pipeline Bubble
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Reducing Pipeline Bubble by the Gpipe Micro-batch Strategy
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Huang Y. Introducing Gpipe, an open 
source library for efficient training large-
scale neural network models. Google AI 
Blog, March 2019.  



1F1B Pipeline Scheduling
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Narayanan etc.. Efficient Large-Scale 
Language Model Training on GPU Clusters 
using Megatron-LM., Prof. of Int. Conf. on 
High Performance Computing, 
Networking, Storage and Analysis 2021..  

Default
1F1B
Pipeline
Schedules 

Interleaved
1F1B
Pipeline
Schedules 

Dark color shows the first chunk of a layer. Light color shows the second chunk of a layer.

Saves memory

Saves memory 
& increase 
computational 
efficiency



Tensor Parallelism
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• Tensor Parallelism divides parameters to different devices based 
on model structure and operators.

• LLMs are based on Transformers which mainly include three 
major computation modules:
• Embedding
• Matrix Multiplication (MatMul)
• Cross Entropy Loss



Tensor Parallelism -- Embedding
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• If the total number of words are big, then memory cannot handle embedding parameters.
• E.g.: 64,000 words with dimension of 5120, with 32-bit FP ➔ 64000 x 5120 x 

4/1024/1024 = 1250 MB
• Backward gradients also need 1250MB.
➔ Needs 2.5GB to store
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Tensor Parallelism – Matrix Multiplication I
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• Partition Matrix
• Divided into multiple devices to 

accommodate the memory constraints
• Results are the same
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Tensor Parallelism – Matrix Multiplication II
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• Different Partitions 
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Transformer’s Tensor Parallelism I
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Sheoybi, Patwary, Puri, et. Al. 
Megatron-lm: Training multibillion 
parameter language models using 
model parallelism. ArXiv: 1909.08053, 
2019.  



Transformer’s Tensor Parallelism II
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Sheoybi, Patwary, Puri, et. Al. Megatron-lm: Training multibillion parameter 
language models using model parallelism. ArXiv: 1909.08053, 2019.  



Tensor Parallelism – Softmax / Cross Entropy Loss
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• If the computational categories are big, Softmax / Cross Entropy Loss layer will make the 
results too big to store.

➔ Calculate Softmax values based on partitioning dimensions: 

Softmax 𝑥𝑖 =
𝑒𝑥𝑖

σ𝑗 𝑒
𝑥𝑗

=
𝑒𝑥𝑖−𝑥𝑚𝑎𝑥

σ𝑗 𝑒
𝑥𝑗−𝑥𝑚𝑎𝑥

= 
𝑒𝑥𝑖−𝑥𝑚𝑎𝑥

𝑁
σ σ𝑗 𝑒

𝑥𝑗−𝑥𝑚𝑎𝑥

𝑥𝑚𝑎𝑥= 𝑚𝑎𝑥(𝑚𝑎𝑥 𝑥𝑘 )
p k

p : Device



Hybrid Parallelism

EECS 6895 ADV. BIG DATA AND AI        COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 19

• Hybrid Parallelism combines different parallelism strategies including Data Parallelism, Pipeline Parallelism, 
and Tensor Parallelism.

• Requires high speed communication bandwidth.

• Steps:
• Use Pipeline Parallelism, divide models into different stages using different machines.
• Use Aggregation Data Parallelism to include training efficiency.

• Example of BLOOM:
• Betatron-LM provides Tensor Parallelism and Data Input
• DeepSpeed provides ZeRO optimizer, Pipeline Parallelism, and Distributed Training Components.
➔ Realize all Data, Pipeline, and Tensor Parallelism.

BigScience Large Open-science Open-access 
Multilingual Language Model (BLOOM) => 
more than 1200 contributors



Hybrid Parallelism – BLOOM example
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• Bloom training uses 48 Nvidia 
DGX-A100 clusters. Each cluster 
includes 8 Nvidia A100 80GB 
GPU ➔ 384 GPUs.

• Data Parallelism is divided into 
48 groups.

• Each Model is divided into 12 
steps, using Pipeline Parallelism.

• Each Step is divided into 4 GPUs 
to do Tensor Parallelism.

• Using ZeRO to reduce the usage 
of memory.

Scao, Fan, Akiki, et al. BLOOM: A 176B-parameter open access 
multilingual language model. ArXiv: 2211.05100, 2022.  



Computational Memory Optimization
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• Most LLM training uses Adam Optimization Algorithm.

• Needs 1-dim Momentum and 2-dim Variance.

• Although Adam optimization algorithm is better than SGD and more stable, it increases the need for memory.

• To reduce the memory requirements, most system uses Mixed Precision Training ➔ Save FP32 and FP16 or 
BF16 simultaneously.

• BF16 has bigger range but fewer accuracy.

• Use some technologies to handle gradient loss and model not stable ➔ Dynamic Loss Scaling and Mixed 
Precision Optimizer.

• Example: 
• For a 75B parameter model, it needs 15GB computational memory using FP16.
• But, at training, it needs 120GB for:

• Model Sates
• Residual States, including Activation, Buffer, and Memory Fragmentation.
• ➔ Using Activation Checkpoinging to reduce the memory usage.



ZeRO: Zero Redundancy Data Parallelism
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• ZeRO reduces memory needs and communication need, including these three methods:

• Partitioning Adam Optimizer

• Partitioning Model Gradients

• Partitioning Model Parameters

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models. 
Rajbhandari et. al. Prof. of Intl. Conf. for High Performance Computing, 
Networking, Storge and Analysis. IEEE 2020



Computing Cluster for Distributed Training
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• Multiple servers in a Rack
• Racks communicated with Top of Rack Switch (ToR)
• Spine Switch can be added
• Multi-Level Tree



Communication Speed in Cluster
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• GPT-3 as an example, each model copy has 700GB local data.

• If using 1024 GPUs having 128 Model Copies, then it needs to transmit 
700GB x 128 = 89.6 TB gradient data.

• Therefore, for LLM distributed training, usually Fat-Tree Topology is used.

• InfiniBand (IB) technology is used for High Speed Network. Each IB can 
provide 200 Gbps or 400 Gbps bandwidth.
• Nvidia’s DGX server provides each machine of 1.6 Tbps bandwidth. 
• Nvidia’s HGX server provides each machine of 3.2 Tbps bandwidth.

• Each server is usually composed of 2-16 computational units.
• If using traditional PCIe, which can only provide 128 GB / second.
• Nvidia H100 uses HBM which provides 3350 GB / second.
• Nvidia HGX H100 GPU uses NVSwitch, which has NV Port. Each NVSwitch is 

links 8 H100 cards. It makes any H100 card has 900 GB/s two-way speed.



New cluster specs
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Parameter Server 
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• A distributed system has two types of servers: Training Server and Parameter Server

• Parameter server needs to provide enough memory and communications.

• When training, parameter server is responsible to parameter synchronization.

• Each training server sends the computed gradient values to the corresponding parameters.

• Each Parameter server can be either synchronized training or non-synchronized training.



Decentralized Network
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• Decentralized Network can communicate based on Collective Communication.

• Basic communications include:
• Broadcast
• Scatter
• Reduce
• AllReduce
• Gather
• AllGather
• ReduceScatter
• AlltoAll

• Popular Libraries include MPI, GLOO, NCCL, etc.
• Message Passing Interface (MPI) is usually used in multiple process communication and coordination.
• GLOO is an MPI provided by Facebook, providing Collective Communications Library. It supports CPU and 

GPU distributed Learning.
• Nvidia Collective Communication Library is a GPU communication library issued by Nvidia specifically for 

GPU.



DeepSpeed
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• DeepSpeed is an open-source deep learning optimization library created by Microsoft.

• It is mainly for LLM training speed and scalability.

• It helps researchers being able to quickly explore iteration and new models and algorithms.

• It includes many speedup algorithms.

• It also includes many management tools, such as distributed training management, memory optimization, 
and model compression.



DeepSpeed mechanisms

EECS 6895 ADV. BIG DATA AND AI        COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 29

https://www.microsoft.c
om/en-
us/research/blog/deeps
peed-extreme-scale-
model-training-for-
everyone/ 

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/


DeepSpeed 3D Parallelism Strategy
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DeepSpeed Scaling
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DeepSpeed Software Architecture
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User Model

DeepSpeed API

Deep Learning Framework
(PyTorch, TensorFlow, …)

Framework OPS DeepSpeed OPS

Underlying Library
(CUDA, NCCL, ..)

Underlying Library
(Azure ML, Azure VMs, MPI-Based platforms, Local Node, …)

Hardware
(GPU, CPU, TPU, NPU, ..)

DeepSpeed RunTime

Training Tuning Utility I/O



Llama Distributed Training - I
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• Using DeepSpeed to train Llama model.

• Step 1: Training data setting:
• DataLoader
• RandomSampler and SequentialSampler are samplers from PyTorch
• DistributedSample as data sampler for distributed training
• Default_date_collator: data collector for transformers
• Create_pretrain_dataset: for setting pre-train dataset.

• Step 2: Model loading:
• Using transformers library to load and set Llama model and related Tokenizer
• Use From-Pretrained to load pretrained Llama model, tokenizer, and model setting.
• Padding may be used if necessary.

• Step 3: Set up optimizer:
• Using DeepSpeedCPUAdam and FusedAdam to speedup.
• Use get_optimizer_grouped_parameters
• Choose best optimizers
• Scheduling of the learning rate



Llama Distributed Training - II
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• Step 4: DeepSpeed Set Up:
• Set up Global_Batch_Size and Micro_Batch_size
• Set up get_train_ds_config:

• ZeRO optimization setting
• Hybrid precision training (e.g., FP16)
• Gradient Clipping
• Hybrid Engine setting
• TensorBoard setting
• Get Evaluation DS Config

• Step 5: DeepSpeed Initialization:
• Check local GPU (using CUDA)
• DeepSped Init Distributed() for each process’s synchronization.
• Get Torch.Distributed>get_rank()
• Based on parameters (e.g., offload, Zero Stage, etc) to set up a DeepSpeed Dictionary
• Sync all procedures using torch.distributed.barrier()
• Use Deepspeed.initialize to initiate
• Use Gradient checkpointing to find ways to save memory.



Llama Distributed Training - III
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• Step 6: Model training
• Preparation before training. 

• Use print_rank_0 to print out the training states. Make sure all proceses print info.
• Training loop:

• In each iteration, it prints current loop and all loops.
• Data batch is moved to related GPU
• Execute model

• Storing Model:
• Models can be saved in different format:

• HuggingFace’s model format
• DeepSpeed’s Zero Stage 3 format



Summary of Speeding Up
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• DeepSpeed, Megatron-LM, Colossal-AI’s training models can be used for LLM model training.

• Most open source LLM models are developed based on HuggingFace transformers.

• If < 30B parameters, it’s possible to not using Tensor Parallelism.

• It’s important for hyper parameters – batch size, learning rate, optimizer, etc.

• Important for the stability of models.
• Llama-2 uses batch size of 4M tokens.
• GPT-3 uses batch size of 32K to 3.2M tokens.

• Many current LLMs use Warm-up and Decay Learning Rate. Gradually increase Learning rate to the maximum number.

• LLMs training usually uses Adam or AdamW optimizers. 
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