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Distributed Training o

UNIVERSITY

Distributed Training is to execute Machine Learning or Deep Learning tasks into subtasks run on multiple parallel machines.

Data parallelism Model parallelism

- Worker node 2

Worker node 1
Data  Script

G Data Data ;
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H
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Shared model Partitioned model

https://learn.microsoft.com/en-us/azure/machine- https://www.anyscale.com/blog/
learning/concept-distributed-training?view=azureml-api-2 what-is-distributed-training
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Distribution Training Speed o

COLUMBIA
UNIVERSITY

Training Speed is proportional to speed of single device x quantity of devices x speed up of multi-devices

* Speed of Single Device:
e Single Chip speed
* Data l/O speed
* Hybrid Precision Training
* Computational Fusion
e Gradient Addition

<10cycles
* Quantity of Devices:
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Training Time and Device Comparisons 2,

UNIVERSITY

e GPT-3: Nvidia V100 GPU
* OPT:
* 992 Nvidia A100 80GB GPU
e Fully Sharded Data Parallel
* Megatron-LM Tensor Parallelism
* 2 months

e BLOOM:
* 384 GPU = 48 x 8 Nvidia A100 80GB GPU
e Using 4 x NVLink for GPU internal communications
e Using 4 Omni-Path 100GBps card for enhanced 8-dim communication
* 3.5 months

 Llama:
* Nvidia A100 80GB GPU
 Llama-7B 82,432 GPU hours
 Llama-13B 135,168 GPU hours
 Llama-33B 530,432 GPU hours
* Llama-65B 1,022,362 GPU hours
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Hardware Computational Challenges 22,

UNIVERSITY

e Computational Wall:
* Nvidia H100 SXM (March 2022): FP 16 -> 2000 TFLOPS (Floating Point Operations per Second)
 GPT-3 needs 314 ZFLOPS

e Memory Wall:
* GPT-3 uses 175B parameters
* Using FP32, it needs 700GB
* However, H100 GPU has only 80GB memory

¢ Communication Wall:
 GPT-3 if using 128 epoch, then each iteration needs to transmit 89.6 TB.
* However, InfiniBand link provides less than 800Gbps.
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Parallelization Strategy 2,

UNIVERSITY

 Computation is based on Data and Model

* Data are divided into Mini-batch.

* Training system uses mini-batch’s loss function and optimization to modify the parameters
e Execution of LLM multi-layer neural network can be described by a Computational Graph.
e This graph has multiple connected Operations.

* Each operator executes a Neural Network Lawyer.

* Parameters represents the trained weights.

A
A

Gradient 1 Gradient 2 Gradient 3

Data Parallelism, Model Parallelism, or Hybrid Parallelism
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Data Parallelism o

UNIVERSITY

Every device has a Model Replica
of the entire neural network

Data

* In each iteration, each device Partition 1 g g
only process a subset of a mini- Device 1
batch. « .
e Using this data for forward Gradient 1 Gradient 2 Gradient 3
computation Network i I I
Communications Il

Gradient 1 Gradient 2 Gradient 3

* Each local Gi propagates its
result to all devices

_ , . Device 2
* All devices combine all new Gi, Data

and use the average to update Partition 2
the model
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Data Parallelism — Global Batch Size Per Second ol

* Synchronized computation of all
devices’ gradient computations at the
backward computation.

Data
Partition 1

A

* Make sure all devices get the average Device 1
of gradients. -

e Usual strategies include: Gradient 1 Gradient 2 Gradient 3
. o A
* Tensor Flow Distributed Strategy Network I I
Communications

* PyTorch Distrubted y : :
 Horovod Distributed Optimzer Gradient 1 Gradient 2 Gradient 3

- - -

Data
Partition 2

* Pros: data are parallelized. Each

computation is relative independent. D€Vice 2

e Cons: each device has a backup of the
whole model. Requires more memory
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Model Parallelism o8

UNIVERSITY
* Inter-operator Parallelism a.k.a. Device 1

Pipeline Parallelism

* |Intra-operator Parallelism, a.k.a.
Tensor Parallelism

Device 2 >

e E.g.: GPT-3 has 175B parameter.
e |f each parameter uses 32 FP
=» 700GB memory
* |f each parameter uses 16 FP
=>» 350GB memory Device 1

Pipeline Parallelism

 However, H100 only supports
80GB memory

Device 2

Tensor Parallelism
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Pipeline Parallelism challenge - Pipeline Bubble

6 7
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Device 4
Device 3

Device 2

Device 1

Device 4
Device 3

Device 2

Device 1

T

Model Parallelism Bubble / Pipeline Bubble

T

Reducing Pipeline Bubble by the Gpipe Micro-batch Strategy
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Huang Y. Introducing Gpipe, an open
source library for efficient training large
scale neural network models. Google Al
Blog, March 2019.




1F1B Pipeline Scheduling

6 7
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Default
1F1B
Pipeline
Schedules

Saves memory

Interleaved
1F1B
Pipeline
Schedules

Saves memory
& increase
computational

efficiency

Device 1
Device 2
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Assign multiple stages
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Backward Pass

Forward Pass

Dark color shows the first chunk of a layer. Light color shows the second chunk of a layer.
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Tensor Parallelism =24
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e Tensor Parallelism divides parameters to different devices based
on model structure and operators.

* LLMs are based on Transformers which mainly include three
major computation modules:
* Embedding
* Matrix Multiplication (MatMul)
* Cross Entropy Loss
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Tensor Parallelism -- Embedding e

COLUMBIA
UNIVERSITY

If the total number of words are big, then memory cannot handle embedding parameters.
e E.g.: 64,000 words with dimension of 5120, with 32-bit FP = 64000 x 5120 x
4/1024/1024 = 1250 MB
Backward gradients also need 1250MB.
=» Needs 2.5GB to store

Hidden size
Hidden size
Single-Node Embedding bz I = bz
Tensor Parallelism
Input
Hidden size Hidden size
_ bz Hidden size

Two-Node Embedding b
Tensor Parallelism z

bz
Hidden size )

AllReduce_Sum

Input = bz
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Tensor Parallelism — Matrix Multiplication | e

UNIVERSITY

* Partition Matrix

e Divided into multiple devices to
accommodate the memory constraints

* Results are the same

N K
Single-Node MatMul
Tensor Parallelism M X N = M
Matrix X Matrix A Matrix Y
K/2 K/2 @ Same Result
N x N [ A = M K
Two-Node MatMul M ) M
Tensor Parallelism K/2
All Gather
MatrixX X p = M Matrix Y
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Tensor Parallelism — Matrix Multiplication Il e

UNIVERSITY

e Different Partitions

Single-Node MatMul
Tensor Parallelism M X N

Matrix X Matrix A Matrix Y

N/2 K ¢ Same Result

Two-Node MatMul ' M
Tensor Parallelism N/2 K K
All Reduce

Matrix Y
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Transformer’s Tensor Parallelism | o

UNIVERSITY
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Input Embeddings (tokens, Al S Megatron-Im: Training multibillion
positicas, -} & Dropout . parameter language models using
(b) Self-Attentlon model parallelism. ArXiv: 1909.08053,

2019.
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Transformer’s Tensor Parallelism | oon

Table 1. Parameters used for scaling studies. Hidden size per atten-

tion head is kept constant at 96. Table 2. Model configurations used for GPT-2.

Hidden Time
Parameter | Layers | Hidden | Attn | Size | Total | per
_ _ Number | Number | Model | Model Count Size |Heads| per |GPUs |Epoch
Hidden | Attention of of parallel | +data Head (days)
Size heads layers |parameters | GPUs | parallel 355M 24 1024 16 64 64 | 0.86
(billions) GPUs 2.5B 54 1920 20 96 128 | 2.27
1536 16 40 1.2 1 64 8.3B 72 3072 24 128 512 2.10
1920 20 54 2.5 2 128
2304 24 64 4.2 4 256
3072 32 72 8.3 8 512 Table 3. Zero-shot results. SOTA are from (Khandelwal et al.,
2019) for Wikitext103 and (Radford et al., 2019) for LAMBADA.
m Model Parallel = Model + Data Parallel Model Wikitext103 | LAMBADA

100% Perplexity | | Accuracy 1

so% [ 355M 19.31 45.18%

60% e b 2.5B 12.76 61.73%

40% 8.3B 10.81 66.51%

20% Previous SOTA 15.79 63.24%
1 2 4 8 - 64 128

0%
256 512

Weak Scaling

Number of GPUS

Figure 5. Model and model + data parallel weak scaling efﬁciency Sheoybi, Patwary, P!Jl’i, et. Al Megatrgn-lm: T_raining multibillion parameter
language models using model parallelism. ArXiv: 1909.08053, 2019.

as a function of the number of GPUs.
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Tensor Parallelism — Softmax / Cross Entropy Loss Sovmmn,

* If the computational categories are big, Softmax / Cross Entropy Loss layer will make the
results too big to store.

=» Calculate Softmax values based on partitioning dimensions:

e e

e
Z](ex]) — Zj(exj—xmax)_ NZ(Zj(exj_xmax))

Softmax(x;) =

Xmax = max(max(xk))

P: Device
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Hybrid Parallelism i,

e Hybrid Parallelism combines different parallelism strategies including Data Parallelism, Pipeline Parallelism,
and Tensor Parallelism.

e Requires high speed communication bandwidth.

* Steps:
e Use Pipeline Parallelism, divide models into different stages using different machines.
e Use Aggregation Data Parallelism to include training efficiency.

 Example of BLOOM:
e Betatron-LM provides Tensor Parallelism and Data Input
* DeepSpeed provides ZeRO optimizer, Pipeline Parallelism, and Distributed Training Components.
=>» Realize all Data, Pipeline, and Tensor Parallelism.

Data Data preparation

]
[ Tooling ] [ Analysis ]

BigScience Large Open-science Open-access
Multilingual Language Model (BLOOM) =>
more than 1200 contributors

Collaborations Ethical and Legal Model Card Bloom Book
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Hybrid Parallelism — BLOOM example

6 7

COLUMBIA
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* Bloom training uses 48 Nvidia
DGX-A100 clusters. Each cluster
includes 8 Nvidia A100 80GB
GPU = 384 GPUs.

 Data Parallelism is divided into
48 groups.

e Each Model is divided into 12

steps, using Pipeline Parallelism.

e Each Stepisdivided into 4 GPUs
to do Tensor Parallelism.

e Using ZeRO to reduce the usage
of memory.

8 copies of the model are trained in parallel
on a total of 384 GPUs (data parallelism = 8)

DP (data parallelism)

< >
e e e g (g Ve TRl
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'oooo,'oooo,'oooo,'oooo,'oooo,'vooo,'oooo,'oooo
Ioooo, lo0oo, '00dg 0000, 10000, 0000, 10000, lo0oo
yooooh,ooonhyoooayoooo'y,ooooh,oooo'y,ooooyoooo
0oogr, 000000000001, 00001,00001,00001,0000
Ooo00,'0oono, 0000, 0000, 0000, 0000, oddd, ooao
|DDDD|:E[E”UUJJHLLLLHUJJJ”LLUU”JJJ,”Luuu
iooooh oooohicooohoooo oooohoooo'i1oooohoooo
ooool,coogl,0000h, 000, 00000000, 0000h,000n
0000, 0000, 0000, 0oony 0000, 00000000, 0000

"

A A

- e ~ ~ ~ ~ s ~ ¢ -
data batch #1 | | cata betch #2 | | date batch #3 || dta batch #4 | | dats batch #5 | | data batch #6 | | dta bateh #7 | | data baten 48|
L RN N N N\ A S J J

[ ]—> 1GPU - NVIDIA A100 with 80GB of memory

PP (pipeline parallelism)

TP (tensor parallelism)

':n
_:'\\*‘ Model parameters

are divided across 4 GPUs
(tensor parallelism = 4)

The layers of the model
are spread across

12 groups of GPUs
(pipeline parallelism = 12)

QE\* One full copy («replica»)

of the model takes
48 GPUs

data batch ‘

Scao, Fan, Akiki, et al. BLOOM: A 176B-parameter open access

multilingual language model. ArXiv: 2211.05100, 2022.
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Computational Memory Optimization 2,

UNIVERSITY

* Most LLM training uses Adam Optimization Algorithm.
* Needs 1-dim Momentum and 2-dim Variance.
* Although Adam optimization algorithm is better than SGD and more stable, it increases the need for memory.

* To reduce the memory requirements, most system uses Mixed Precision Training =» Save FP32 and FP16 or
BF16 simultaneously.

* BF16 has bigger range but fewer accuracy.

* Use some technologies to handle gradient loss and model not stable =» Dynamic Loss Scaling and Mixed
Precision Optimizer.

* Example:
* For a 75B parameter model, it needs 15GB computational memory using FP16.
e But, at training, it needs 120GB for:
* Model Sates
e Residual States, including Activation, Buffer, and Memory Fragmentation.
« =» Using Activation Checkpoinging to reduce the memory usage.
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ZeRO: Zero Redundancy Data Parallelism g2

UNIVERSITY

* ZeRO reduces memory needs and communication need, including these three methods:

e . Memory K=12
e Partitioning Adam Optimizer gpu, gpu, gPUy Consumed ";;Z;i“
- . Baseline (2+2+K)+¥ | 120GB
e Partitioning Model Gradients
K+W
Pos 2W +2W + N 31.4GB
* Partitioning Model Parameters .
Pos+g 2¥ + N, 16.6GB
| e | e | w 1 QGB
Pos+g+p Ny '
" Parameters Gradients Optimizer States
ZeRO Speed-up ® ZeRO A Baseline-MP A Baseline w. internode MP 15 Pflops 10 Pflops
50 12
g 45 10
= 40
[ ]
;’ 35 L4 o ) d s 8
o 30 ® o
s ™ @
g 25 A . . 4 6 o
2 20 ® o
a 4
£ 15 N
3
E 10 A 2 ZeRO: Memory Optimizations Toward Training Trillion Parameter Models.
=3 A A A A A A Rajbhandari et. al. Prof. of Intl. Conf. for High Performance Computing,
0 Networking, Storge and Analysis. IEEE 2020
1.5 8 40 60 80 100 120 140 170

Model Size - Billion Parameters
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Computing Cluster for Distributed Training 2,

matmulJ—b[ relu HmatmuleubJ

Fast connections

-4—Pp Slow connections

machine machine machine machine

DR DnbHEw Dok =i

=4

 Multiple servers in a Rack

* Racks communicated with Top of Rack Switch (ToR)
e Spine Switch can be added

* Multi-Level Tree
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Communication Speed in Cluster g2

UNIVERSITY

* GPT-3 as an example, each model copy has 700GB local data.

e If using 1024 GPUs having 128 Model Copies, then it needs to transmit
700GB x 128 = 89.6 TB gradient data.

* Therefore, for LLM distributed training, usually Fat-Tree Topology is used.

* InfiniBand (IB) technology is used for High Speed Network. Each IB can
provide 200 Gbps or 400 Gbps bandwidth.
* Nvidia’s DGX server provides each machine of 1.6 Tbps bandwidth.
* Nvidia’s HGX server provides each machine of 3.2 Tbps bandwidth.

600GB/s
NVLINK

* Each serveris usually composed of 2-16 computational units. I
» If using traditional PCle, which can only provide 128 GB / second. —— ﬂ'%ﬂ
* Nvidia H100 uses HBM which provides 3350 GB / second. HGX A100 8-GPU Baseboard
* Nvidia HGX H100 GPU uses NVSwitch, which has NV Port. Each NVSwitch is
links 8 H100 cards. It makes any H100 card has 900 GB/s two-way speed.
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New cluster specs

% 7,

COLUMBIA
UNIVERSITY

Feature NVIDIA H100 NVL NVIDIA H200 NVL Improvement

Memory 94 GB HBM3 141 GB HBM3e 1.5x capacity
Memory Bandwidth 3.35TB/s 4.8 TB/s 1.4x faster
Max NVLink (BW) 2-way (600 GB/s) 4-way (1.8 TB/s) 3x faster
Max Memory Pool 188 GB 564 GB 3x larger

Table 1. Specification comparison between H100 NVL and H200 NVL

2x200Gbps

BF3
B3220 B

System Memory System Memory

[ Gens, x16 [ I GenS, x16

GenS, x16 l

Gens, x16

Gens, x18

BF3
B3140H

1x400Gbps

3en5, x16 Gen5,x16  GenS,x16  GenS,x18  Gen5,x16 Gens,x16  Gen5,x16  GenS5x16  Gen5,x16  GenS,x16  Gen5, x16

H200 § H200 § H200 § H200 BF3 BF3 H200 § H200 § H200 § H200 BF3
NVL NVL NVL NVL B3140H B3140H NVL NVL NVL NVL B3140H

% %’ 1x400Gbps 1x400Gbps %‘ % 1x400Gbps
Lt &t 1 |

NVL4

NVL4

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV.




Parameter Server =

UNIVERSITY

e Adistributed system has two types of servers: Training Server and Parameter Server

e Parameter server needs to provide enough memory and communications.

* When training, parameter server is responsible to parameter synchronization.

e Each training server sends the computed gradient values to the corresponding parameters.

e Each Parameter server can be either synchronized training or non-synchronized training.
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Decentralized Network Govometa

* Decentralized Network can communicate based on Collective Communication.

* Basic communications include:

Broadcast
Scatter
Reduce
AllIReduce
Gather
AllGather
ReduceScatter
AlltoAll

* Popular Libraries include MPI, GLOO, NCCL, etc.

Message Passing Interface (MPI) is usually used in multiple process communication and coordination.
GLOO is an MPI provided by Facebook, providing Collective Communications Library. It supports CPU and
GPU distributed Learning.

Nvidia Collective Communication Library is a GPU communication library issued by Nvidia specifically for
GPU.
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DeepSp eed e

DeepSpeed is an open-source deep learning optimization library created by Microsoft.

* |tis mainly for LLM training speed and scalability.
* It helps researchers being able to quickly explore iteration and new models and algorithms.
* Itincludes many speedup algorithms.

* It also includes many management tools, such as distributed training management, memory optimization,
and model compression.

=. Microsoft | Research Ourresearch ~  Programs & events v~ More v Register: Research Forum All Microsoft ~ p ‘

Training Inference Compression
Deepspeed * Speed * Latency ¢ Model size
* Scale * Serving cost e Latency
* Cost * Agility * Tuning cost
and Inference * Democratization ¢ Composability

Extreme Speed and Scale for DL Training
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DeepSpeed mechanisms
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Communication volume
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Scaling to a Trillion Parameters
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DeepSpeed Software Architecture of

UNIVERSITY

User Model DeepSpeed RunTime

DeepSpeed API Training  Tuning Utility

Deep Learning Framework
(PyTorch, TensorFlow, ...)

Framework OPS DeepSpeed OPS

I

Underlying Library
(CUDA, NCCL, ..)

Underlying Library
(Azure ML, Azure VMs, MPI-Based platforms, Local Node, ...)

Hardware
(GPU, CPU, TPU, NPU, ..)
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lama Distributed Training - | 2,
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* Using DeepSpeed to train Llama model.

e Step 1: Training data setting:
* DatalLoader
« RandomSampler and SequentialSampler are samplers from PyTorch
* DistributedSample as data sampler for distributed training
» Default_date_collator: data collector for transformers
* Create_pretrain_dataset: for setting pre-train dataset.

e Step 2: Model loading:
* Using transformers library to load and set Llama model and related Tokenizer
* Use From-Pretrained to load pretrained Llama model, tokenizer, and model setting.
e Padding may be used if necessary.

* Step 3: Set up optimizer:
* Using DeepSpeedCPUAdam and FusedAdam to speedup.
* Use get_optimizer_grouped_parameters
e Choose best optimizers
e Scheduling of the learning rate

EECS 6895 ADV. BIG DATA AND Al COPYRIGHT © PROF. CY. LIN, COLUMBIA UNIV. 33




Llama Distributed Training - I 2,

UNIVERSITY

* Step 4: DeepSpeed Set Up:
* Set up Global Batch_Size and Micro_Batch_size
* Setup get train_ds_config:
* ZeRO optimization setting
* Hybrid precision training (e.g., FP16)
* Gradient Clipping
* Hybrid Engine setting
* TensorBoard setting
e Get Evaluation DS Config

» Step 5: DeepSpeed Initialization:
* Check local GPU (using CUDA)
* DeepSped Init Distributed() for each process’s synchronization.
* Get Torch.Distributed>get_rank()
* Based on parameters (e.g., offload, Zero Stage, etc) to set up a DeepSpeed Dictionary
e Sync all procedures using torch.distributed.barrier()
* Use Deepspeed.initialize to initiate
e Use Gradient checkpointing to find ways to save memory.
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Llama Distributed Training - Il 2,

UNIVERSITY

e Step 6: Model training
* Preparation before training.
e Use print_rank_0 to print out the training states. Make sure all proceses print info.
* Training loop:
* In each iteration, it prints current loop and all loops.
e Data batch is moved to related GPU
e Execute model
e Storing Model:
 Models can be saved in different format:
* HuggingFace’s model format
* DeepSpeed’s Zero Stage 3 format
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Summary of Speeding Up 2.

UNIVERSITY

* DeepSpeed, Megatron-LM, Colossal-Al’s training models can be used for LLM model training.
* Most open source LLM models are developed based on HuggingFace transformers.
* |If <30B parameters, it’s possible to not using Tensor Parallelism.
* It’simportant for hyper parameters — batch size, learning rate, optimizer, etc.
* Important for the stability of models.
e Llama-2 uses batch size of 4M tokens.
e GPT-3 uses batch size of 32K to 3.2M tokens.

* Many current LLMs use Warm-up and Decay Learning Rate. Gradually increase Learning rate to the maximum number.

e LLMs training usually uses Adam or AdamW optimizers.
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