
EECS 6895 Adv. Big Data and AI

Lecture 4: Distributed Training

Prof. Ching-Yung Lin

Columbia University

February 11th, 2025

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 1

Distributed Training

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 2

https://www.anyscale.com/blog/
what-is-distributed-training

https://learn.microsoft.com/en-us/azure/machine-
learning/concept-distributed-training?view=azureml-api-2

Distributed Training is to execute Machine Learning or Deep Learning tasks into subtasks run on multiple parallel machines.

https://www.anyscale.com/blog/what-is-distributed-training
https://www.anyscale.com/blog/what-is-distributed-training
https://learn.microsoft.com/en-us/azure/machine-learning/concept-distributed-training?view=azureml-api-2
https://learn.microsoft.com/en-us/azure/machine-learning/concept-distributed-training?view=azureml-api-2

Distribution Training Speed

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 3

Training Speed is proportional to speed of single device x quantity of devices x speed up of multi-devices

• Speed of Single Device:
• Single Chip speed
• Data I/O speed

• Hybrid Precision Training
• Computational Fusion
• Gradient Addition

• Quantity of Devices:
• Depending on the communication of

devices

• Multi-device acceleration:
• Combining algorithm and network

topology

Training Time and Device Comparisons

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 4

• GPT-3: Nvidia V100 GPU
• OPT:

• 992 Nvidia A100 80GB GPU
• Fully Sharded Data Parallel
• Megatron-LM Tensor Parallelism
• 2 months

• BLOOM:
• 384 GPU ➔ 48 x 8 Nvidia A100 80GB GPU
• Using 4 x NVLink for GPU internal communications
• Using 4 Omni-Path 100GBps card for enhanced 8-dim communication
• 3.5 months

• Llama:
• Nvidia A100 80GB GPU
• Llama-7B 82,432 GPU hours
• Llama-13B 135,168 GPU hours
• Llama-33B 530,432 GPU hours
• Llama-65B 1,022,362 GPU hours

Hardware Computational Challenges

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 5

• Computational Wall:
• Nvidia H100 SXM (March 2022): FP 16 -> 2000 TFLOPS (Floating Point Operations per Second)
• GPT-3 needs 314 ZFLOPS

• Memory Wall:
• GPT-3 uses 175B parameters
• Using FP32, it needs 700GB
• However, H100 GPU has only 80GB memory

• Communication Wall:
• GPT-3 if using 128 epoch, then each iteration needs to transmit 89.6 TB.
• However, InfiniBand link provides less than 800Gbps.

Parallelization Strategy

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 6

• Computation is based on Data and Model

• Data are divided into Mini-batch.

• Training system uses mini-batch’s loss function and optimization to modify the parameters

• Execution of LLM multi-layer neural network can be described by a Computational Graph.

• This graph has multiple connected Operations.

• Each operator executes a Neural Network Lawyer.

• Parameters represents the trained weights.

Data

O
p

erato
r 1

O
p

erato
r 2

O
p

erato
r 3

Gradient 1 Gradient 2 Gradient 3

Data Parallelism, Model Parallelism, or Hybrid Parallelism

Data Parallelism

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 7

Data
Partition 1

O
p

erato
r 1

O
p

erato
r 2

O
p

erato
r 3

Gradient 1 Gradient 2 Gradient 3

O
p

erato
r 1

O
p

erato
r 2

O
p

erato
r 3

Gradient 1 Gradient 2 Gradient 3

Data

Data
Partition 2

Data

Network
Communications

• Every device has a Model Replica
of the entire neural network

• In each iteration, each device
only process a subset of a mini-
batch.

• Using this data for forward
computation

• Each local Gi propagates its
result to all devices

• All devices combine all new Gi,
and use the average to update
the model

Device 1

Device 2

Data Parallelism – Global Batch Size Per Second

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 8

Data
Partition 1

O
p

erato
r 1

O
p

erato
r 2

O
p

erato
r 3

Gradient 1 Gradient 2 Gradient 3

O
p

erato
r 1

O
p

erato
r 2

O
p

erato
r 3

Gradient 1 Gradient 2 Gradient 3

Data

Data
Partition 2

Data

Network
Communications

• Synchronized computation of all
devices’ gradient computations at the
backward computation.

• Make sure all devices get the average
of gradients.

• Usual strategies include:
• Tensor Flow Distributed Strategy
• PyTorch Distrubted
• Horovod Distributed Optimzer

• Pros: data are parallelized. Each
computation is relative independent.

• Cons: each device has a backup of the
whole model. Requires more memory

Device 1

Device 2

Model Parallelism

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 9

Data Operator 1• Inter-operator Parallelism a.k.a.
Pipeline Parallelism

• Intra-operator Parallelism, a.k.a.
Tensor Parallelism

• E.g.: GPT-3 has 175B parameter.
• If each parameter uses 32 FP
➔ 700GB memory

• If each parameter uses 16 FP
➔ 350GB memory

• However, H100 only supports
80GB memory

Device 1

Device 2 Operator 2

Data Operator 2Device 1

Device 2

Operator
1

Partition
1

Oper
ator 2

Operator
1

Partition
2

Oper
ator 2

Tensor Parallelism

Pipeline Parallelism

Pipeline Parallelism challenge - Pipeline Bubble

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 10

Device 1

Device 2

F 1

F 2

F 4

F 3

B4

B3

B2

B1 Update

Update

Update

Update

Model Parallelism Bubble / Pipeline Bubble

Device 3

Device 4

Device 1

Device 2

Update

Update

Update

Update

Reducing Pipeline Bubble by the Gpipe Micro-batch Strategy

Device 3

Device 4

F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44 B44 B43 B42 B41

B34 B33 B32 B31

B24 B23 B22 B21

B14 B13 B22 B11

Huang Y. Introducing Gpipe, an open
source library for efficient training large-
scale neural network models. Google AI
Blog, March 2019.

1F1B Pipeline Scheduling

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 11

Narayanan etc.. Efficient Large-Scale
Language Model Training on GPU Clusters
using Megatron-LM., Prof. of Int. Conf. on
High Performance Computing,
Networking, Storage and Analysis 2021..

Default
1F1B
Pipeline
Schedules

Interleaved
1F1B
Pipeline
Schedules

Dark color shows the first chunk of a layer. Light color shows the second chunk of a layer.

Saves memory

Saves memory
& increase
computational
efficiency

Tensor Parallelism

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 12

• Tensor Parallelism divides parameters to different devices based
on model structure and operators.

• LLMs are based on Transformers which mainly include three
major computation modules:
• Embedding
• Matrix Multiplication (MatMul)
• Cross Entropy Loss

Tensor Parallelism -- Embedding

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 13

• If the total number of words are big, then memory cannot handle embedding parameters.
• E.g.: 64,000 words with dimension of 5120, with 32-bit FP ➔ 64000 x 5120 x

4/1024/1024 = 1250 MB
• Backward gradients also need 1250MB.
➔ Needs 2.5GB to store

E1

E2

Hidden size

W
o

rd
 s

iz
e

=

Hidden size

E1

Hidden size

=
Hidden size

bz bz

bz

E2

bz

=

Hidden size

bz

Hidden size

bz
AllReduce_Sum

Single-Node Embedding
Tensor Parallelism

Two-Node Embedding
Tensor Parallelism

Input

Input

Tensor Parallelism – Matrix Multiplication I

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 14

• Partition Matrix
• Divided into multiple devices to

accommodate the memory constraints
• Results are the same

A1 A2 =

K

M M
Single-Node MatMul
Tensor Parallelism

Two-Node MatMul
Tensor Parallelism

Matrix X

N

x N

K

Matrix Y

A1 K

M M

Matrix X

N x N

K/2

A2N

K/2

x

=

=

Y1

K/2

M

Y2

K/2

M
All Gather

Same Result

Matrix A

Matrix Y

Tensor Parallelism – Matrix Multiplication II

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 15

• Different Partitions

X1 X2
A1

A2
=

K

M M
Single-Node MatMul
Tensor Parallelism

Two-Node MatMul
Tensor Parallelism

Matrix X

N

x N

K

Matrix A

X1 A1
K

M

M

N/2

x N/2

K

A2N/2

K

x

=

=

Y1

K

M

Y2

K

M
All Reduce

Same Result

Matrix Y

Matrix YX2M

N/2

Transformer’s Tensor Parallelism I

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 16

Sheoybi, Patwary, Puri, et. Al.
Megatron-lm: Training multibillion
parameter language models using
model parallelism. ArXiv: 1909.08053,
2019.

Transformer’s Tensor Parallelism II

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 17

Sheoybi, Patwary, Puri, et. Al. Megatron-lm: Training multibillion parameter
language models using model parallelism. ArXiv: 1909.08053, 2019.

Tensor Parallelism – Softmax / Cross Entropy Loss

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 18

• If the computational categories are big, Softmax / Cross Entropy Loss layer will make the
results too big to store.

➔ Calculate Softmax values based on partitioning dimensions:

Softmax 𝑥𝑖 =
𝑒𝑥𝑖

σ𝑗 𝑒
𝑥𝑗

=
𝑒𝑥𝑖−𝑥𝑚𝑎𝑥

σ𝑗 𝑒
𝑥𝑗−𝑥𝑚𝑎𝑥

=
𝑒𝑥𝑖−𝑥𝑚𝑎𝑥

𝑁
σ σ𝑗 𝑒

𝑥𝑗−𝑥𝑚𝑎𝑥

𝑥𝑚𝑎𝑥= 𝑚𝑎𝑥(𝑚𝑎𝑥 𝑥𝑘)
p k

p : Device

Hybrid Parallelism

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 19

• Hybrid Parallelism combines different parallelism strategies including Data Parallelism, Pipeline Parallelism,
and Tensor Parallelism.

• Requires high speed communication bandwidth.

• Steps:
• Use Pipeline Parallelism, divide models into different stages using different machines.
• Use Aggregation Data Parallelism to include training efficiency.

• Example of BLOOM:
• Betatron-LM provides Tensor Parallelism and Data Input
• DeepSpeed provides ZeRO optimizer, Pipeline Parallelism, and Distributed Training Components.
➔ Realize all Data, Pipeline, and Tensor Parallelism.

BigScience Large Open-science Open-access
Multilingual Language Model (BLOOM) =>
more than 1200 contributors

Hybrid Parallelism – BLOOM example

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 20

• Bloom training uses 48 Nvidia
DGX-A100 clusters. Each cluster
includes 8 Nvidia A100 80GB
GPU ➔ 384 GPUs.

• Data Parallelism is divided into
48 groups.

• Each Model is divided into 12
steps, using Pipeline Parallelism.

• Each Step is divided into 4 GPUs
to do Tensor Parallelism.

• Using ZeRO to reduce the usage
of memory.

Scao, Fan, Akiki, et al. BLOOM: A 176B-parameter open access
multilingual language model. ArXiv: 2211.05100, 2022.

Computational Memory Optimization

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 21

• Most LLM training uses Adam Optimization Algorithm.

• Needs 1-dim Momentum and 2-dim Variance.

• Although Adam optimization algorithm is better than SGD and more stable, it increases the need for memory.

• To reduce the memory requirements, most system uses Mixed Precision Training ➔ Save FP32 and FP16 or
BF16 simultaneously.

• BF16 has bigger range but fewer accuracy.

• Use some technologies to handle gradient loss and model not stable ➔ Dynamic Loss Scaling and Mixed
Precision Optimizer.

• Example:
• For a 75B parameter model, it needs 15GB computational memory using FP16.
• But, at training, it needs 120GB for:

• Model Sates
• Residual States, including Activation, Buffer, and Memory Fragmentation.
• ➔ Using Activation Checkpoinging to reduce the memory usage.

ZeRO: Zero Redundancy Data Parallelism

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 22

• ZeRO reduces memory needs and communication need, including these three methods:

• Partitioning Adam Optimizer

• Partitioning Model Gradients

• Partitioning Model Parameters

ZeRO: Memory Optimizations Toward Training Trillion Parameter Models.
Rajbhandari et. al. Prof. of Intl. Conf. for High Performance Computing,
Networking, Storge and Analysis. IEEE 2020

Computing Cluster for Distributed Training

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 23

• Multiple servers in a Rack
• Racks communicated with Top of Rack Switch (ToR)
• Spine Switch can be added
• Multi-Level Tree

Communication Speed in Cluster

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 24

• GPT-3 as an example, each model copy has 700GB local data.

• If using 1024 GPUs having 128 Model Copies, then it needs to transmit
700GB x 128 = 89.6 TB gradient data.

• Therefore, for LLM distributed training, usually Fat-Tree Topology is used.

• InfiniBand (IB) technology is used for High Speed Network. Each IB can
provide 200 Gbps or 400 Gbps bandwidth.
• Nvidia’s DGX server provides each machine of 1.6 Tbps bandwidth.
• Nvidia’s HGX server provides each machine of 3.2 Tbps bandwidth.

• Each server is usually composed of 2-16 computational units.
• If using traditional PCIe, which can only provide 128 GB / second.
• Nvidia H100 uses HBM which provides 3350 GB / second.
• Nvidia HGX H100 GPU uses NVSwitch, which has NV Port. Each NVSwitch is

links 8 H100 cards. It makes any H100 card has 900 GB/s two-way speed.

New cluster specs

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 25

Parameter Server

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 26

• A distributed system has two types of servers: Training Server and Parameter Server

• Parameter server needs to provide enough memory and communications.

• When training, parameter server is responsible to parameter synchronization.

• Each training server sends the computed gradient values to the corresponding parameters.

• Each Parameter server can be either synchronized training or non-synchronized training.

Decentralized Network

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 27

• Decentralized Network can communicate based on Collective Communication.

• Basic communications include:
• Broadcast
• Scatter
• Reduce
• AllReduce
• Gather
• AllGather
• ReduceScatter
• AlltoAll

• Popular Libraries include MPI, GLOO, NCCL, etc.
• Message Passing Interface (MPI) is usually used in multiple process communication and coordination.
• GLOO is an MPI provided by Facebook, providing Collective Communications Library. It supports CPU and

GPU distributed Learning.
• Nvidia Collective Communication Library is a GPU communication library issued by Nvidia specifically for

GPU.

DeepSpeed

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 28

• DeepSpeed is an open-source deep learning optimization library created by Microsoft.

• It is mainly for LLM training speed and scalability.

• It helps researchers being able to quickly explore iteration and new models and algorithms.

• It includes many speedup algorithms.

• It also includes many management tools, such as distributed training management, memory optimization,
and model compression.

DeepSpeed mechanisms

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 29

https://www.microsoft.c
om/en-
us/research/blog/deeps
peed-extreme-scale-
model-training-for-
everyone/

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

DeepSpeed 3D Parallelism Strategy

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 30

https://www.microsoft.c
om/en-
us/research/blog/deeps
peed-extreme-scale-
model-training-for-
everyone/

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

DeepSpeed Scaling

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 31

https://www.microsoft.c
om/en-
us/research/blog/deeps
peed-extreme-scale-
model-training-for-
everyone/

https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/
https://www.microsoft.com/en-us/research/blog/deepspeed-extreme-scale-model-training-for-everyone/

DeepSpeed Software Architecture

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 32

User Model

DeepSpeed API

Deep Learning Framework
(PyTorch, TensorFlow, …)

Framework OPS DeepSpeed OPS

Underlying Library
(CUDA, NCCL, ..)

Underlying Library
(Azure ML, Azure VMs, MPI-Based platforms, Local Node, …)

Hardware
(GPU, CPU, TPU, NPU, ..)

DeepSpeed RunTime

Training Tuning Utility I/O

Llama Distributed Training - I

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 33

• Using DeepSpeed to train Llama model.

• Step 1: Training data setting:
• DataLoader
• RandomSampler and SequentialSampler are samplers from PyTorch
• DistributedSample as data sampler for distributed training
• Default_date_collator: data collector for transformers
• Create_pretrain_dataset: for setting pre-train dataset.

• Step 2: Model loading:
• Using transformers library to load and set Llama model and related Tokenizer
• Use From-Pretrained to load pretrained Llama model, tokenizer, and model setting.
• Padding may be used if necessary.

• Step 3: Set up optimizer:
• Using DeepSpeedCPUAdam and FusedAdam to speedup.
• Use get_optimizer_grouped_parameters
• Choose best optimizers
• Scheduling of the learning rate

Llama Distributed Training - II

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 34

• Step 4: DeepSpeed Set Up:
• Set up Global_Batch_Size and Micro_Batch_size
• Set up get_train_ds_config:

• ZeRO optimization setting
• Hybrid precision training (e.g., FP16)
• Gradient Clipping
• Hybrid Engine setting
• TensorBoard setting
• Get Evaluation DS Config

• Step 5: DeepSpeed Initialization:
• Check local GPU (using CUDA)
• DeepSped Init Distributed() for each process’s synchronization.
• Get Torch.Distributed>get_rank()
• Based on parameters (e.g., offload, Zero Stage, etc) to set up a DeepSpeed Dictionary
• Sync all procedures using torch.distributed.barrier()
• Use Deepspeed.initialize to initiate
• Use Gradient checkpointing to find ways to save memory.

Llama Distributed Training - III

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 35

• Step 6: Model training
• Preparation before training.

• Use print_rank_0 to print out the training states. Make sure all proceses print info.
• Training loop:

• In each iteration, it prints current loop and all loops.
• Data batch is moved to related GPU
• Execute model

• Storing Model:
• Models can be saved in different format:

• HuggingFace’s model format
• DeepSpeed’s Zero Stage 3 format

Summary of Speeding Up

EECS 6895 ADV. BIG DATA AND AI COPYRIGHT © PROF. C.Y. LIN, COLUMBIA UNIV. 36

• DeepSpeed, Megatron-LM, Colossal-AI’s training models can be used for LLM model training.

• Most open source LLM models are developed based on HuggingFace transformers.

• If < 30B parameters, it’s possible to not using Tensor Parallelism.

• It’s important for hyper parameters – batch size, learning rate, optimizer, etc.

• Important for the stability of models.
• Llama-2 uses batch size of 4M tokens.
• GPT-3 uses batch size of 32K to 3.2M tokens.

• Many current LLMs use Warm-up and Decay Learning Rate. Gradually increase Learning rate to the maximum number.

• LLMs training usually uses Adam or AdamW optimizers.

	Default Section
	Slide 1: EECS 6895 Adv. Big Data and AI Lecture 4: Distributed Training
	Slide 2: Distributed Training
	Slide 3: Distribution Training Speed
	Slide 4: Training Time and Device Comparisons
	Slide 5: Hardware Computational Challenges
	Slide 6: Parallelization Strategy
	Slide 7: Data Parallelism
	Slide 8: Data Parallelism – Global Batch Size Per Second
	Slide 9: Model Parallelism
	Slide 10: Pipeline Parallelism challenge - Pipeline Bubble
	Slide 11: 1F1B Pipeline Scheduling
	Slide 12: Tensor Parallelism
	Slide 13: Tensor Parallelism -- Embedding
	Slide 14: Tensor Parallelism – Matrix Multiplication I
	Slide 15: Tensor Parallelism – Matrix Multiplication II
	Slide 16: Transformer’s Tensor Parallelism I
	Slide 17: Transformer’s Tensor Parallelism II
	Slide 18: Tensor Parallelism – Softmax / Cross Entropy Loss
	Slide 19: Hybrid Parallelism
	Slide 20: Hybrid Parallelism – BLOOM example
	Slide 21: Computational Memory Optimization
	Slide 22: ZeRO: Zero Redundancy Data Parallelism
	Slide 23: Computing Cluster for Distributed Training
	Slide 24: Communication Speed in Cluster
	Slide 25: New cluster specs
	Slide 26: Parameter Server
	Slide 27: Decentralized Network
	Slide 28: DeepSpeed
	Slide 29: DeepSpeed mechanisms
	Slide 30: DeepSpeed 3D Parallelism Strategy
	Slide 31: DeepSpeed Scaling
	Slide 32: DeepSpeed Software Architecture
	Slide 33: Llama Distributed Training - I
	Slide 34: Llama Distributed Training - II
	Slide 35: Llama Distributed Training - III
	Slide 36: Summary of Speeding Up

