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ABSTRACT 
In this paper, we present algorithms for parsing the structure of 
produced soccer programs. The problem is important in the 
context of a personalized video streaming and browsing system. 
While prior work focuses on the detection of special events such 
as goals or corner kicks, this paper is concerned with generic 
structural elements of the game. We begin by defining two 
mutually exclusive states of the game, play and break based on 
the rules of soccer. We select a domain-tuned feature set, 
dominant color ratio and motion intensity, based on the special 
syntax and content characteristics of soccer videos. Each state of 
the game has a stochastic structure that is modeled with a set of 
hidden Markov models. Finally, standard dynamic programming 
techniques are used to obtain the maximum likelihood 
segmentation of the game into the two states. The system works 
well, with 83.5% classification accuracy and good boundary 
timing from extensive tests over diverse data sets. 

1. INTRODUCTION 
In this paper, we present new algorithms for soccer video 
structure analysis. The problem is useful in automatic content 
fi ltering for soccer fans and professionals, and it is more 
interesting in the broader background of video structure analysis 
and content understanding. By structure, we are primarily 
concerned with the temporal sequence of high-level game 
states, namely play and break, and the goal of this paper is to 
parse the continuous video stream into an alternating sequence 
of the two states automatically. This approach is distinctive 
from existing works, most of which focus on the detection of 
domain-specific events. And the advantages of parsing 
structures separately from event detection are: (1) typically no 
more than 60% of content corresponds to play, thus we can 
achieve significant information reduction; (2) content 
characteristics in play and break are different, thus we can 
optimize event detectors with such prior knowledge. 

Related work in the literature mainly lies in sports video 
analysis, including soccer and various other games, and general 
video segmentation. For soccer video, prior work has been on 
shot classification [2], scene reconstruction [8], and rule-based 
semantic classification [6]. For other sports video, supervised 
learning was used in [9] to recognize canonical views such as 
baseball pitching and tennis serve. For general video 
classification, hidden Markov models (HMM) is used [3] to 
distinguish different types of programs such as news, 
commercial, etc. Our previous work [7] built heuristic rules 
using a domain-specific feature, dominant color ratio, to 
segment play and break. The work presented in this paper 
focuses on two specific aspects that were not investigated in the 
previous work: (1) using formal statistical techniques to model 
domain-specific syntactic constraints rather than constructing 

heuristic rules directly; (2) using simple, but effective features 
to capture the content syntax.  

We first define play and break as the set of soccer 
semantic alphabets used in this paper, and then we select two 
features based on observations of soccer video syntax: dominant 
color ratio and motion intensity. The stochastic structure within 
a play or a break is modeled with a set of HMMs, and the 
transition among these HMMs is captured with dynamic 
programming. Average classification accuracy per segment is 
above 80%, and most of the play/break boundaries are correctly 
detected within a 3-second offset. 

Section 2 presents relevant observations of soccer video 
syntax and the selection of features; section 3 includes 
algorithms for HMM training and classification; section 4 
describes our experiments and results in greater detail; section 
5 concludes the paper. 

2. VIDEO SYNTAX AND FEATURE SELECTION 

2.1 Soccer  game semantics 
We define the set of mutually exclusive and complete 

semantic states in a soccer game: play and break [5]. The game 
is in play when the ball is in the field and the game is going on; 
break, or out of play, is the compliment set, i.e. whenever “ the 
ball has completely crossed the goal line or touch line, whether 
on the ground or in the air”  or “ the game has been halted by the 
referee” .  

Segmenting a soccer video into play /break is hard because 
of: (1) the absence of a canonical scene (such as the serve scene 
in tennis or the pitch scene in baseball video [9]); (2) the loose 
temporal structure, i.e. play/break transitions and highlights of 
a game (goal, corner kick, shot, etc) do not have a deterministic 
relationship with other perceivable events (as opposed to 
volleys are always preceded by a serve in a tennis game). Yet 
identifying play/break is interesting because not only can we 
achieve about 40% information reduction (Table 1), play/break 
information also has potential applications such as play-by-play 
browsing and editing, or play-break game statistics analysis. 

2.2 Soccer  video syntax 
Soccer video syntax refers to the typical production style 

and editing patterns that help the viewer understand and 
appreciate the game. Two major factors influencing the syntax 
are the producer and the game itself, and the purpose of syntax 
is to emphasize the events as well as to attract viewers’  
attention (such as the use of cutaways). Specifically, soccer 
video syntax can be characterized by some rules-of-thumb 
observed by sports video producers [1]: (1) convey global status 
of the game; (2) closely follow action and capture highlights. In 
our algorithm, two salient features are selected to capture this 
syntax implicitly. 



2.3 Feature extraction 
Dominant-color  ratio:  

As shown in [7], the color of grass field can be adaptively 
learned for each clip by picking up the dominant hue value 
throughout a randomly selected frame pool. Hence we can 
distinguish grass pixels vs. non-grass pixels in each frame. 
Define dominant-color-ratio as: 

|||| ΡΡ= gcη ,      (2.1) 

where P is the set of pixels, and Pg is the set of grass pixels. 

Observations in [7] also showed that cη  indicates the 

scale of view in the current shot, which falls into one of the 
following three categories: the wide (or global) shot, with the 
largest percentage of grass field; the medium (or zoom-in shot), 
with less grass in sight; and the close-up (including cutaways), 
with few grass pixels. Moreover, as consistent with the 
production principles mentioned in the previous section, a play 
is usually captured by wide shots interleaved with short medium 
shots or close-ups; and a break usually has a majority of close-
up and medium shots. However, we are analyzing features 
uniformly sampled from the video stream rather than the key-
frame of each shot [2], because: (1) shots are neither aligned 
with the play/break states nor consistent with the scale of view; 
(2) shot detectors tend to give lots of false alarms due to 
unpredictable camera motion and intense object motion. 

The dominant-color ratio was thresholded in [7] in order to 
map it to three types of view scales directly. And in this paper, 
the dominant-color-ratio cη  is modeled as the Gaussian 

observations of HMMs described in section 3.1. 

M otion intensity:  

Motion intensity m is computed as the average magnitude 
of “effective”  motion vectors in a frame (equation 2.2).  
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 is the 

motion vector for each macro-block. 
Motion intensity roughly estimates the gross motion in the 

whole frame, including object and camera motion. It carries 
complementary information to the color feature, and it often 
indicates the semantics within a particular shot. For instance, a 
wide shot with high motion intensity often results from player 
motion and camera pan during a play; while a static wide shot 
usually occurs when the game has come to a pause.  

In the sample clip shown in Figure 1, we can see distinct 
feature patterns are associated with the scale of shot and the 

game status. But as these variations are hard to quantify with 
explicit low-level decision rules, we resort to HMM modeling 
described in the next section. 

3. PLAY-BREAK CLASSIFICATION  

In this section, classification algorithms using HMM and 
dynamic programming are presented. 

Soccer game has distinct inherent states play (P) and break 
(B), and each of these two broad classes also consists of 
different sub-structures such as the switching of shots and the 
variation of motion. This is analogous to isolated word 
recognition [4] where models for each word are built and 
evaluated with the data l ikelihood. But as these domain-specific 
classes P/B in soccer are very diverse in themselves (typically 
ranging from 6 seconds up to 2 minutes in length), we use a set 
of models for each class to capture the structure variations. And 
this differs from just using a homogeneous model for each class 
as in [3]. 

Our task here is to segment and classify a continuous 
feature stream in one pass. Hence we take a fixed-length sliding 
window (width 3 seconds, sliding by 1 second) and classify the 
feature vector into either one of the P/B classes. The feature 
stream is first smoothed by a temporal low-pass filter, 
normalized with regard to its mean and variance of the entire 
clip, then the segment of size 2xN in each time slice (2 is 
feature dimension, N is window length) is fed into the HMM-
dynamic programming modules for classification. 

3.1 Compute HMM model likelihood 
Denote play models/likelihoods with subscript P, and 

break models/l ikelihoods with B hereafter. Let the set of pre-
trained HMM be: { }BnBPnPBP ...1;,...1ˆ =ΩΩ=Ω � , we 

evaluate the feature vector likelihood under each of the models, 
to get the set of l ikelihoods for each time slice, denoted as: 

)]()...(),(),...([)( 11 tQtQtQtQtQ BnBPnP=
�

 (Figure 2, left part). 

In our system, 6 HMM topologies are trained for play and 
for break, respectively. These include 1/2/3-state fully 
connected models, 2/3 state left-right models and a 2-state fully 
connected model with an entering and an exiting state. The 
observations are modeled as mixture of Gaussians, and we have 
2 mixtures per feature dimension per state in the experiments.  

The HMM model parameters are trained using the EM 
algorithm[4]. Training data are manually chopped into 
homogeneous play/break chunks; EM for the play-models are 
conducted over every complete play chunks, and vice versa for 
break-models. HMM training is not conducted over 3-second 
windows because we hope that the HMM structures can take 

Figure 1. Clip Argentina (19’52”~20’30” ): key frames, feature contours, and segmentation results (with or without dynamic programming) 
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longer time correlation into account, and thus “ tolerate”  some 
less frequent events in a state, such as short close-ups within a 
play. Experiments show that the overall accuracy will be 
consistently 2~3% lower if models are trained on short 
segments, and the video tends to be severely over-segmented as 
some of the short close-ups and cutaways during a play wil l be 
misclassified as break. Moreover, Student’s t-test shows that 
the null hypothesis that training on longer and short segments 
have the same accuracy is rejected with 95.0% confidence. 

Since training is done for the whole play or break, but 
classification is done over short segments, we may conjecture 
that results wil l not be worse if only the three fully connected 
models (instead of all six) are used. This is confirmed by the 
result that classification accuracy only differs by 1.5% for these 
two cases and such a difference is not significant since the t-test 
confidence is less than 50%. 

3.2 Find optimal path with dynamic programming  
HMM likelihood tells about the “ fitness”  of each model for 

every segment, but the long-term correlation is unaccounted for. 
Thus, finding a global optimal state path 
{ }BPtsTtts /)(,,...2,1|)( ==  using neighborhood information is 

our next step. At each time interval, define 2 nodes 
corresponding to states P and B, respectively; the score of each 
node is the likelihood of the “best-fit”  among all 6 models for 
that state: 

)}({max)( tQtQ Pi
i
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i

B = , 6,,1 �=i . 

 Also define the transition l ikelihood from one state of the 
previous interval to a state of the current interval as QPP, QPB, 
QBP, QBB, obtained by counting over the training set: 
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where 1)( =tpδ i f s(t)=P, 0 otherwise.  

Similarly, we can define QPB, QBP and QBB. 

Hence we have a trel lis grid (Figure 2, right) with scores 
associated with each node and each transition, and dynamic 
programming[4] is a well-established technique for finding the 
best path on this grid. Let  )(tPσ and )(tBσ  be the highest score 

along a single path that leads to state P and B at time t, 
respectively, then we can identify the best scores for state P and 
B at time t+1: 

)}(),(max{)1()1()1( tQtQtQt BBPPPPPP σλσλλσ ++++−=+  

)}(),(max{)1()1()1( tQtQtQt BBBPPBBB σλσλλσ ++++−=+  

Here the transitions are only modeled between play and 
break, rather than among all of the underlying HMM models, 
because having this 2x2 transition matrix is sufficient for our 
play/break segmentation task, and modeling all possible 
transitions among all HMMs (a 12x12 transition matrix 
required) is subject to over-fitting. If the score )(tQP and 

)(tQB at each node were the true posterior probabil ity that 

feature vector at time t comes from a play or a break model, 
then this dynamic programming step would essential ly be a 
second-level HMM. Here constant λ  weights model likelihood 
and transition l ikelihood: 0=λ  is equivalent to maximum 
likelihood classification; 1=λ  gives a first-order Markov 
model. Classification accuracy is not very sensitive to λ , if 
valued within a reasonable range. A typical λ  is 0.25, and 
classification accuracy varies within ± 1.5%for ]4.0,1.0[∈λ . 

As demonstrated in figure 1, employing this dynamic 
programming step alleviates over-segmentation, and results 
show that average classification accuracy is improved by 2.2% 
over HMM-maximum likelihood only, with t-test confidence 
99.5%. 

4. EXPERIMENTS AND EVALUATION 

Four soccer video clips used in our experiment are briefly 
described in Table 1. All clips are in MPEG-1 format, SIF size, 
30f/s or 25f/s; dominant color ratio and motion intensity are 
computed on I- and P-frames only; motion intensity is 
interpolated on I-frames. The ground-truth is labeled under the 
principles that (1) we assume the game status does not change 
unless indicated by a perceivable event; (2) replays are treated 
as in play, unless it is not adjacent to a play and shorter than 5 
seconds. Here play-percentage refers to the amount of time the 
game is in play over the total length of the clip. 

Clip Name Length  # of plays play-percentage Source 

Argentina 23’56” 34 58.5% TV program 
KoreaA 25’00” 37 60.6% Mpeg-7 

KoreaB 25’23” 28 52.1% Mpeg-7 
Espana 15’00” 16 59.2% Mpeg-7 

Table 1. Soccer video clips used in the experiment  
In our experiments, the HMM are trained on one clip and 

tested on other three clips; this process is repeated four times. 
Our first measurement is the classification accuracy, defined as 
the number of correctly classified segments over total number of 
segments. Training and testing accuracies are shown in Table 2. 
Average classification performance (avg-cla) of each clip as test 
set is computed as the mean of the non-diagonal elements of the 
current row; similarly, average generalization performance 
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(avg-gen) is computed for the clip as training set; and the 
overall average classification/generalization accuracy over the 
entire dataset is put in the lower right corner. 

Table 2. Classification accuracy,  
the diagonal elements are training results 

Since our goal is to do joint segmentation and 
classification in one-pass, we are also interested in measuring 
the boundary accuracy. For each 3-second segment (1 second 
apart from each other), the classifier not only gives the P/B 
label, but also indicates if a boundary exists between the 
previous and the current label. This is different from boundary 
detection algorithms that solely aim at outlier detection (such as 
shot boundary detection by measuring histogram distance), 
since each misjudgment here can cause two false positives 
instead of one. Therefore, we look at the whole confusion 
matrix, including correct-rejection, as well as hits, misses, and 
false-positives (Table 3). Let boundary-offset be the absolute 
difference between the nearest boundary in detection result and 
every boundary in the ground-truth. The distribution over all 
testing trials is shown in Table 4. 

Video Argentina KoreaA KoreaB Espana 

Boundary 68 74 56 32 
Non-Boundary 1369 1426 1468 869 

*Hit 45.0 49.7 40.3 22.0 
Miss 23.0 24.3 15.7 10.0 

False Positive 19.0 23.0 21.7 14.0 
Correct-Rejection 1350 1403 1446 855.0 

Table 3. Boundary evaluations, *Hit refers to boundaries 
detected within ± 3 seconds. Elements of the confusion matrix 

are the average testing result over 3 different training sets. 

Offset (secs) [0, 3] (3, 6] (6, 10] (10,25] (25,50] >50 

Percentage 62% 12% 5.8% 13% 6.7% 0.7% 

Table 4. Boundary offset distribution 

The results show that our classification scheme has 
consistent performance over various dataset; and models trained 
on one clip generalize well to other clips. The classification 
accuracy is above 80% for every clip, and more than 60% of the 
boundaries are detected within a 3-second ambiguity 
window(Table 4). Compared to the previously work [7], testing 
accuracy improves 1%, 15%, and 18% for clips KoreaB, 
Argentina and Espana (trained on KoreaA), respectively. 
Typical errors in the current algorithm are due to model 
breakdowns that feature values do not always reflect sematic 
state of the game, such as a brief switch of play/break without 
significant change in features. Moreover, if we regard play as 
the important content of a game, the algorithm suffers more 
from false alarms than misses, as we have observed that 91% of 
the play-segments are correctly classified on average. 

5. CONCLUSION 

In this paper, we presented new algorithms for soccer video 
segmentation and classification. First, play and break are 
defined as the basic semantic elements of a soccer video; 
second, observations of soccer video syntax are described and 
feature set is chosen based on these observations; and then, 
classification /segmentation is performed with HMM followed 
by dynamic programming. The results are evaluated in terms of 
classification accuracy and segmentation accuracy; extensive 
statistical analyses show that classification accuracy is about 
83.5% over diverse data sets, and most of the boundaries are 
detected within a 3-second ambiguity window. 

It is encouraging that high-level domain-dependent video 
structures can be computed with high accuracy using 
compressed-domain features and generic statistical tools. We 
believe that the performance can be attributed to the match of 
features to the domain syntax and the power of the statistical 
tools in capturing the temporal dynamics of the video. 

The algorithms leaves much room for improvement and 
extension: (1) there are other relevant low-features that might 
provide complementary information and may help improve 
performance, such as camera motion, edge, audio, etc; (2) 
higher-level object detectors, such as goal and whistle 
detection, can be integrated; (3) further details of the content 
(e.g. different phases in a play) can be revealed by studying the 
structures within an HMM; (4) models that are more general 
and more capable for capturing interactions and temporal 
evolvement of features, objects, concepts and events can be 
used, such as dynamic Bayesian networks. 
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Training Set 
Test Set 

Argentina KoreaA KoreaB Espana 
avg-cla 

Argentina 0.872 0.825 0.825 0.806 0.819 
KoreaA 0.781 0.843 0.843 0.798 0.807 
KoreaB 0.799 0.853 0.853 0.896 0.849 
Espana 0.799 0.896 0.896 0.817 0.863 
avg-gen  0.793 0.858 0.855 0.833 0.835 




