Lecture 9

LVCSR Decoding (cont'd) and Robustness

Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

IBM T.J. Watson Research Center
Yorktown Heights, New York, USA
{picheny,bhuvana, stanchen}@us.ibm.com

19 November 2012

Part |

LVCSR Decoding (cont’d)

What Were We Talking About Again?

@ Large-vocabulary continuous speech recognition (LVCSR).
@ Decoding.

e How to select best word sequence ...

e Given audio sample.
@ The basic recipe.

e Convert LM to giant HMM (i.e., decoding graph).
e Run Viterbi.

What’s the Problem?

@ Context-dependent graph expansion is complicated.
@ Decoding graphs way too big.
@ Decoding way too slow.

4/82

Where Are We?

0 Graph Expansion and Finite-State Machines

5/82

Review: Graph Expansion

@ Start with (n-gram) LM expressed as HMM.

e Repeatedly expand to lower-level HMM's.
@ This is tricky.

e Especially expanding from CI to CD phones.
@ Natural framework for rewriting graphs:

e Finite-state acceptors and transducers.

Outline of Graph Expansion

Finite-State Acceptors and Transducers

@ FSA represents list of strings.
e e.g. a, ab, ac.

@ FST represents list of (input, output) string pairs:
e e.g, (a A), (ab, AB), (ac, AC).

(> a:A b:B
c:.C

Review: Composition

@ A has meaning: a, ab, ac.
C : a b
C
@ T has meaning: (a, A), (ab, AB), (ac, AC).
(: aA b:B
c:C
@ Ao T has meaning: A, AB, AC.
OO0
C

9/82

@ FST’s can express wide range of string transformations.

e 1:1 transformations (e.g., word to baseform).
e 1:many transformations (e.g., multiple baseforms).
e 1:0 tranformations (e.g., filter bad language).

@ Composition applies to all strings in FSA simultaneously!
@ Simple and efficient to compute!

10/82

A View of Graph Expansion

@ Design some finite-state machines.

e L =language model FSA.

e Tim—ci = FST mapping to Cl phone sequences.
e Tgi—cp = FST mapping to CD phone sequences.
e Top_gmum = FST mapping to GMM sequences.

@ Compute final decoding graph via composition:

Lo Tim—cio Tei—cp © Tep—amm

@ How to design transducers?

11/82

Context-Independent Transformations

@ Rewrite string same way independent of context.
e e.g., word to phones (TWO = T UW).
@ Create single state.
@ Make loop arcs with appropriate input and output.
o Create extra states/arcs so only one token per arc.
@ Don't forget identity transformations!
e Strings that aren’t accepted are discarded.

12/82

Example: Mapping Words To Phones

THE DH AH
THE DH TIY
DOG D AO G

13/82

Example: Mapping Words To Phones
A O THE O DOG @

THE:DH

Example: Inserting Optional Silences

15/82

Example: Rewriting Cl Phones as HMM’s

A O—Q—Q—@

€€
9ot 9o2 9ro. Ino2 ga ga.z
A e} T O 9o /Q\ 902 /C)\ Gro1 £\ a0z /Q\ 961 /C)\ g2 @

16/82

Context-Dependent Transformations

@ Rewrite string different ways depending on context.
e e.g., Cl phone to CD phone (L = L-S+1IH).
@ Create one state per “context”.
e e.g., trigram model FSA has state per bigram history.

dit

dah

17/82

How to Express CD Expansion via FST’s?

@ Step 1: Rewrite each phone as triphone (L. = L-S+IH).

e Need to know identity of phone to right!?
e ldea: delay output of each phone by one arc.
e State encodes last two phones, like trigram model.

@ Step 2: Rewrite each triphone as CD HMM.

e Compute HMM for each triphone using dcs tree.
e This transformation is context-independent.

€:9n0.1,3

€:9no.2,1
AO-D+G:gno.1.7 66‘%{

18/82

How to Express CD Expansion via FST’s?

19/82

How to Express CD Expansion via FST’s?

Q/\j \&/U AA @

AA-T+T

T-AA+AA AATH|

D-AA+AA Q_AA'D)C))

@ Point: composition automatically expands FSA ...
e To correctly handle context!
@ Makes multiple copies of states in original FSA ...

e That can exist in different triphone contexts.
e (And makes multiple copies of only these states.)

T-|+AA

20/82

What About Those Probability Thingies?

@ e.g., to hold language model probs, transition probs, etc.
@ FSM’s = weighted FSM'’s.

o WFSA’s, WFST's.
@ Each arc has score or cost.

e So do final states.

21/82

What Is A Cost?

@ HMM’s have probabilities on arcs.
e Prob of path is product of arc probs.

===

@ WFSM’s have negative log probs on arcs.
e Cost of path is sum of arc costs plus final cost.

22/82

What Does a Weighted FSA Mean?

@ The (possibly infinite) list of strings it accepts ...
e And for each string, a cost.
@ Things that don't affect meaning.

e How costs or labels distributed along path.
e Invalid paths.

@ Are these equivalent?

@a/l@blz@ @a/o@b/o

23/82

What If Two Paths With Same String?

@ How to compute cost for this string?
@ Use “min” operator to compute combined cost?

e Combine paths with same labels; retain meaning.
e Result of Viterbi algorithm unchanged.

al/l
o==0o= OzD—=2()
(b3 _» (b3 _»

@ Operations (+, min) form a semiring (the tropical semiring).
e Other semirings possible.

24/82

Which Is Different From the Others?

Weighted Composition
Q==
A

d:D/0

A/3 B/1 D/2
Ao T

26/82

The Bottom Line

@ Place LM, AM |Og pI'ObS in L, TLM—>CI; TCI—»CD: TCD—>GMM-
e e.g., LM probs, pronunciation probs, transition probs.
@ Compute decoding graph via weighted composition:

Lo Tim—cio Tei—cp © Tcp—amm

@ Then, doing Viterbi decoding on this big HMM ...
e Correctly computes (more or less):

w* =argmax P(w|x) =argmax P(w)P.,(x)

.
Po@)= > T[Pa D Pai [NXtai tajo 05a)

paths A t=1 comp j dim d

27/82

Recap: FST’s and Composition? Awesome!

@ Operates on all paths in WFSA (or WFST) simultaneously.
@ Rewrites symbols as other symbols.
e e.g., words as phone sequences (or vice versa).
@ Context-dependent rewriting of symbols.
e e.g., rewrite Cl phones as their CD variants.
@ Adds in new scores.
e e.g., language model lattice rescoring.
@ Restricts set of allowed paths (intersection).
e e.g., find all paths containing word ATTACK.
@ Or all of above at once.

28/82

Weighted FSM’s and ASR

@ Graph expansion can be framed ...

e As series of (weighted) composition operations.
e Handles context-dependent expansion correctly.

@ Correctly combines scores from multiple WFSM’s.

o WFSA'’s express distributions over strings.
e WFST'’s express conditional distributions.

@ Building FST’s for each step is pretty straightforward . . .
e Except for context-dependent phone expansion.
@ Handles graph expansion for training, too.

29/82

Discussion

@ Don’t need to write code?

e Generate FST’s; use FSM toolkit like OpenFST.
@ WFSM framework is very flexible.

e e.g., CD pronunciations at word or phone level.
@ Scaling to wider phonetic contexts?

e Quinphones: 50° ~ 300M arcs.
e Given word vocabulary, not all quinphones occur.

30/82

Where Are We?

e Shrinking the Language Model

31/82

The Problem

@ Naive graph expansion, trigram LM.

e If |V| = 50000, 50000% ~ 10'* word arcs.
e Cl expansion = ~10 states/word.
e CD expansion = >10 states/word.

S-AA+IH
S-AE+IH

S-AH+IH

O

IH-S+K K-IH+S

O
O
@ Graph won't fit in memory.

@ Viterbi too slow.
e Time proportional to number of states (at least).

32/82

Compactly Representing N-Gram Models

@ Trigram model: | V| arcs in naive representation.

dit

dah

@ Small fraction of all trigrams occur in training data.
e Is it possible to keep arcs only for seen trigrams?

33/82

Compactly Representing N-Gram Models

@ Can express smoothed n-gram models . ..
e Via backoff distributions.

P w;|wi_q) if count(w;_yw;) >0
Psmooth (Wi Wi_1) :{ prmary(| 1) (Wi_1w;)

Qw;_y Psmooth (W) otherwise

@ e.g., Witten-Bell smoothing

PWB(W,"W,'_1) =) PMLE(Wi|WI—1) +

34/82

Compactly Representing N-Gram Models

Porimary(Wilwi_1) if count(w,_1w;) > 0

Psmooth (Wi|Wi—1) —{ aw,_ Psmootn(W;) Otherwise

three/P(three|two)

two /P (twoltwo)
two/P(twolthree)

three/P(three|three)

three/P(three|one)

one/P(onelthree)

35/82

Compactly Representing N-Gram Models

@ By introducing backoff states ...
e Only need arcs for n-grams with nonzero count.
@ Compute probabilities for n-grams with zero count . ..
e By traversing backoff arcs.
@ Does this representation introduce any error?

e Multiple paths with same label sequence?
e i.e., is this model hidden?

36/82

Can We Make the LM Even Smaller?

@ Sure, just remove some more arcs. Which?
@ Count cutoffs.

e e.g., remove all arcs corresponding to bigrams ...
e Occurring fewer than k times in training data.

@ Likelihood/entropy-based pruning (Stolcke, 1998).

e Choose those arcs which when removed, ...
e Change likelihood of training data the least.

37/82

Discussion

@ Only need to keep seen n-grams in LM graph.
e Exact representation blows up graph several times.
@ Can further prune LM to arbitrary size.

e e.g., for BN 4-gram model, 100MW training data ...
e Pruning by factor of 50 = +1% absolute WER.

@ Graph small enough now?
e Let’s keep on going; smaller = faster!

38/82

@ Lab 2, Lab 3 handed back today.
@ /userl/faculty/stanchen/e6870/1ab3_ans/.
@ Lab 4 out tomorrow; due next Thursday, Nov. 29, 11:59pm.
@ Make-up lecture: Wednesday, December 5, 4:10—-6:40pm?
e Location: TBA.
@ Reading projects.

e Paper list updated by Wednesday.

@ http://www.ee.columbia.edu/~stanchen/
falll2/e6870/readings/project_fl1l2.html
(same password as readings).

e Paper selection due next Friday, Nov. 30.

@ Non-reading projects.
e Optional checkpoint next Monday.
e E-mail to schedule meeting before/after class.

39/82

http://www.ee.columbia.edu/~stanchen/fall12/e6870/readings/project_f12.html
http://www.ee.columbia.edu/~stanchen/fall12/e6870/readings/project_f12.html

Where Are We?

e Graph Optimization

40/82

Graph Optimization

@ Can we modify topology of graph ...

e Such that it’s smaller (fewer arcs or states) ...
e Yet retains same meaning.

@ Meaning of weighted acceptor:

e Set of accepted strings; cost of each string.
e Don’t care where costs and labels placed along paths.

41/82

Graph Compaction

@ Consider word graph for isolated word recognition.
e Expanded to phone level: 39 states, 38 arcs.

ABROAD
o OO

Uw

AX
ABUSE

AX

Uw
AX

N
AE

AE

ER

O
O
O

ER ‘ DD
O
O

=
=

AA ABU

=
=

ABU

w
%]

42/82

Determinization

@ Share common prefixes: 29 states, 28 arcs.

DD . ABROAD @
e
R ‘ ABUSE
s
Y uw ,
‘ ABUSE ©
B
Ax ‘ S ‘ ER ‘ DD ‘ ABSURD @
AA uw
ABU
(O
o
o0

43/82

Minimization

@ Share common suffixes: 18 states, 23 arcs.

44/82

Determinization and Minimization

@ By sharing arcs between paths . ..

e Reduced size of graph by half ...
e Without changing meaning!

@ determinization — prefix sharing.
e Produce deterministic version of FSM.
@ minimization — suffix sharing.

e Given deterministic FSM ...
e Find equivalent FSM with minimal number of states.

45/82

What Is A Deterministic FSM?

@ Same as being nonhidden for HMM.
@ No two arcs exiting same state with same input label.
@ No ¢ arcs.
@ i.e, for any input label sequence . ..
e Only one state reachable from start state.

O O . X
CO—_ v =0

46/82

Determinization: The Basic ldea

@ For every input label sequence ...

e Look at set of states reachable from start state.
@ For each unique state set, create state in output FSM.
@ Make arcs in logical way.

A

o=y 020

47/82

Determinization

@ Start from start state.
@ Keep list of state sets not yet expanded.

e For each, find outgoing arcs, ...
e Creating new state sets as needed.

@ Must follow € arcs when computing state sets.

A

o= g ON %

48/82

Example 2

()
)
s () e
&

010202010

ABROAD
ABUSE
ABUSE

ABSURD
ABSURD

N

OO OEE®EOE

DD
S
DD
DD

OIOIOIOIOION0,
o >~ >~ »n N W w
OXOIOIOIOION0
m Mm m m m M m
OJOXOCIOXOION0
z N Z\%8/8/¢%

50/82

Example 3, Continued

DD . ABROAD O
e
R . ABUSE
s
Y uw z
. ABUSE O
B
P @ O——=0O—-0O—=0
s
O : @ O
AA uw
O
(D—2
uw
O-=-0

51/82

Pop Quiz: Determinization

@ For FSA with s states, ...

e What is max number of states when determinized?
e i.e., how many possible unique state sets?

@ Are all unweighted FSA’s determinizable?

e i.e., does algorithm always terminate ...
e To produce equivalent deterministic FSA?

52/82

Minimization: Acyclic Graphs

@ Merge states with same following strings (follow sets).

S OW
O=irl-O -
D

states | following strings
1 ABC, ABD, BC, BD
2 BC, BD
3,6 C,D
45,78 €

53/82

General Minimization: The Basic ldea

@ Given deterministic FSM ...

@ Start with all states in single partition.

@ Whenever states within partition . . .
e Have “different” outgoing arcs or finality . ..
e Split partition.

@ At end, each partition corresponds to state in output FSM.
e Make arcs in logical manner.

54/82

Minimization

@ Invariant: if two states are in different partitions . . .
e They have different follow sets.
e Converse does not hold.
@ First split: final and non-final states.
e Final states have ¢ in their follow sets.
e Non-final states do not.
@ If two states in same partition have ...

e Different number of outgoing arcs or arc labels . ..
e Or arcs go to different partitions ...
e The two states have different follow sets.

55/82

Minimization

action | evidence partitioning
{1,2,3,4,5,6}
split 3,6 final {1,2,4,5}, {3,6}

split1 | hasaarc | {1}, {2,4,5}, {3,6}
split4 | nobarc | {1}, {4}, {2,5}, {3,6}

O=waeC RO

56/82

Discussion

@ Determinization.
e May reduce or increase number of states.
e Improves behavior of search = prefix sharing!
@ Minimization.
e Minimizes states, not arcs, for deterministic FSM’s.
e Does minimization always terminate? How long?
@ Weighted algorithms exist for both FSA’s, FST’s.
e Available in FSM toolkits.
@ Weighted minimization requires push operation.

e Normalizes locations of costs/labels along paths ...
e So arcs that can be merged have same cost/label.

57/82

Weighted Graph Expansion, Optimized

@ Final graph: mln(det(L o TLM—»CI o TCI—>CD o TCD—»GMM))
e L = pruned, backoff language model FSA.
e Tim—ci = FST mapping to Cl phone sequences.
e Tgi—cp = FST mapping to CD phone sequences.
e Top_aum = FST mapping to GMM sequences.

@ Build big graph; minimize at end?
e Problem: can’t hold big graph in memory.
e Many existing recipes for graph expansion.

@ 10"+ states = 20-50M states/arcs.
e 5-10M n-grams kept in LM.

58/82

Where Are We?

0 Run-time Optimizations

59/82

Real-Time Decoding

@ Why is this desirable?
@ Decoding time for Viterbi algorithm; 10M states in graph.

e In each frame, loop through every state in graph.
e 100 frames/sec x 10M states x ...
e 100 cycles/state = 10" cycles/sec.
e PC’s do ~ 10° cycles/second (e.g., 3GHz Xeon).

@ Cannot afford to evaluate each state at each frame.
e = Pruning!

60/82

@ At each frame, only evaluate cells with highest scores.
@ Given active states/cells from last frame .. .

e Only examine states/cells in current frame ...
e Reachable from active states in last frame.
o Keep best to get active states in current frame.

61/82

@ When not considering every state at each frame ...
e Can make search errors.

w* =argmax P(w|x) =argmax P(w)P.,(x)

@ The goal of search:
e Minimize computation and search errors.

62/82

How Many Active States To Keep?

@ Goal: Prune paths with no chance of becoming best path.
@ Beam pruning.

e Keep only states with log probs within fixed distance . ..
e Of best log prob at that frame.
e Why does this make sense? When could this be bad?

@ Rank or histogram pruning.

e Keep only k highest scoring states.
e Why does this make sense? When could this be bad?

@ Can get best of both worlds?

63/82

Pruning Visualized

@ Active states are small fraction of total states (<1%)
@ Tend to be localized in small regions in graph.

>
o
=}
o
>
e}
=
o
>
v}

=

o
%3

(2
Z|&
OO Q
o
OI®
g [~
OO0 OO
o

>
ol
2

w
c
=

64/82

Pruning and Determinization

@ Most uncertainty occurs at word starts.
@ Determinization drastically reduces branching here.

AO

o

==}
v

~

AX
Uw

~

AX

=<

uw
AX

O
AE

AE

ER

N

ER

AA

c
=

ABU

c
=

ABU

OOOOO OO

65/82

Language Model Lookahead

@ In practice, put word labels at word ends. (Why?)
@ What’s wrong with this picture? (Hint: think beam pruning.)

DD/O ‘ ABROAD/4.3 @
A0 '

ABUSE/3.5

g

(=
Z|8
S

S/0

Uuw/o 7
0 ABUSE/3.5

ER/O

ER/0 DD/O ABSURD/A4.7

DD/O ABSURD/4.7 @

ABU/7

Uw/0
ABU/7

66/82

Language Model Lookahead

@ Move LM scores as far ahead as possible.
@ At each point, total cost < min LM cost of following words.
@ push operation does this.

DD/ ‘ ABROAD/O @

AO/0

ABU/O
Oz

UwW/0

' ABU/O

RI0.8 . ABUSE/Q
S0
Y0 uwio 70
oo S O O O ()
AX/35 ' S0 ' ER/0 ' DD/ ' ABSURD/0 @
O OO g OO O
AATTO w3

67/82

Saving Memory

@ Naive Viterbi implementation: store whole DP chart.
@ If 10M-state decoding graph:

e 10 second utterance = 1000 frames.
e 1000 frames x 10M states = 10 billion cells.

@ Each cell holds:
e Viterbi log prob; backtrace pointer.

68/82

Forgetting the Past

@ To compute cells at frame t ...
e Only need cells at frame t — 1!
@ Only reason need to keep cells from past . ..
e Is for backtracing, to recover word sequence.
@ Can we store backtracing information another way?

69/82

Token Passing

@ Maintain “word tree”:
e Compact encoding of list of similar word sequences.
e Node represents word sequence from start state.

@ Backtrace pointer points to node in tree ...

e Holding word sequence labeling best path to cell.
@ Set backtrace to same node as at best last state ...

e Unless cross word boundary.

70/82

Recap: Efficient Viterbi Decoding

@ Pruning is key for speed.
e Determinization and LM lookahead help pruning a ton.
@ Can process ~10000 states/frame in <1x RT on PC.

e Can process ~1% of cells for 10M-state graph ...
e And make very few search errors.

@ Depending on application and resources . ..
e May run faster or slower than 1x RT.
@ Memory usage.
e The biggie: decoding graph (shared memory).

71/82

Where Are We?

e Other Decoding Paradigms

72/82

My Language Model Is Too Small

@ What we’ve described: static graph expansion.
e To make decoding graph tractable . ..
e Use heavily-pruned language model.

@ Another approach: dynamic graph expansion.

e Don'’t store whole graph in memory.
e Build parts of graph with active states on the fly.
e Can use much larger LM’s.

73/82

Dynamic Graph Expansion: The Basic Idea

@ Express graph as composition of two smaller graphs.
e Composition is associative.

Gdecode = Lo Tim—cio Tei—cp© Tep—aum
= Lo (Twm-cio Tei—cp © Teco—amm)

@ Can do on-the-fly composition.

e States in result correspond to state pairs (s1, S2).
e Straightforward to compute outgoing arcs of (sy, Sz).

74/82

Two-Pass Decoding

@ What about my fuzzy logic 15-phone acoustic model . ..
e And 7-gram neural net LM with SVM boosting?
@ Some of the models developed in research are . ..
e Too expensive to implement in one-pass decoding.
@ First-pass decoding: use simpler model ...

e To find “likeliest” word sequences ...
e As lattice (WFSA) or flat list of hypotheses (N-best list).

@ Rescoring: use complex model . ..

e To find best word sequence ...
e Among first-pass hypotheses.

75/82

Lattice Generation and Rescoring

@ In Viterbi, store k-best tracebacks at each word-end cell.
@ To add in new LM scores to lattice ...

e What operation can we use?
@ Lattices have other uses.

e e.g., confidence estimation; consensus decoding;
discriminative training, etc.

76/82

N-Best List Rescoring

@ For exotic models, even lattice rescoring may be too slow.
@ Easy to generate N-best lists from lattices.
e A* algorithm.

THE DOG ATE MY
THE DIG ATE MY
THE DOG EIGHT MAY
THE DOGGY MAY

@ N-best lists have other uses.
e e.g., confidence estimation; displaying alternatives; etc.

77182

Discussion: A Tale of Two Decoding Styles

@ Approach 1: Dynamic graph expansion (since late 1980’s).

e Can handle more complex language models.

e Decoders are incredibly complex beasts.

e e.g., cross-word CD expansion without FST’s.

e Graph optimization difficult.
@ Approach 2: Static graph expansion (AT&T, late 1990’s).

e Enabled by optimization algorithms for WFSM’s.

e Much cleaner way of looking at everything!
FSM toolkits/libraries can do a lot of work for you.
Static graph expansion is complex and can be slow.
Decoding is relatively simple.

78/82

Static or Dynamic? Two-Pass?

@ If speed is priority?
o If flexibility is priority?
e e.g., update LM vocabulary every night.
If need gigantic language model?
If latency is priority?
e What can’'t we use?
If accuracy is priority (all the time in the world)?
If doing cutting-edge research?

79/82

References

@ F. Pereira and M. Riley, “Speech Recognition by
Composition of Weighted Finite Automata”, Finite-State
Language Processing, MIT Press, pp. 431-453, 1997.

[§ M. Mohri, F. Pereira, M. Riley, “Weighted finite-state
transducers in speech recognition”, Computer Speech and
Language, vol. 16, pp. 69—-88, 2002.

[§ A. Stolcke, “Entropy-based pruning of Backoff Language
Models”, Proceedings of the DARPA Broadcast News
Transcription and Understanding Workshop, pp. 270-274,
1998.

80/82

Where Are We?

@ Lectures 1—4: Small vocabulary ASR.
@ Lectures 5-8: Large vocabulary ASR.
@ Lectures 9-12: Advanced topics.

e Robustness; adaptation.

e Advanced language modeling.

e Discriminative training; ROVER; consensus.
e Deep Belief Nets (DBN’s).

@ Lecture 13: Final presentations.

81/82

Course Feedback

@ Was this lecture mostly clear or unclear?
@ What was the muddiest topic?
@ Other feedback (pace, content, atmosphere, etc.).

82/82

	LVCSR Decoding (cont'd)
	Graph Expansion and Finite-State Machines
	Shrinking the Language Model
	Graph Optimization
	Run-time Optimizations
	Other Decoding Paradigms

