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ABSTRACT
Classical matrix factorization approaches to collaborative fil-
tering learn a latent vector for each user and each item, and
recommendations are scored via the similarity between two
such vectors, which are of the same dimension. In this work,
we are motivated by the intuition that a user is a much more
complicated entity than any single item, and cannot be well
described by the same representation. Hence, the variety of
a user’s interests could be better captured by a more com-
plex representation. We propose to model the user with a
richer set of functions, specifically via a set of latent vectors,
where each vector captures one of the user’s latent interests
or tastes. The overall recommendation model is then non-
linear where the matching score between a user and a given
item is the maximum matching score over each of the user’s
latent interests with respect to the item’s latent representa-
tion. We describe a simple, general and efficient algorithm
for learning such a model, and apply it to large scale, real-
world datasets from YouTube and Google Music, where our
approach outperforms existing techniques.
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1. INTRODUCTION
Standard latent models for recommendation are linear fac-

torizations of the user-item matrix of preferences. These
models are then applied at test time for recommendations
of new items. For example, singular value decomposition
(SVD) and its variants, such as SVD++ (see [2] for a good
review), factorize the user-item matrix in a least-squares
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sense where the matrix elements are considered to be rat-
ings. Methods like CofiRank [8], CLiMF [6] or Wsabie
[10] optimize a ranking loss instead with the goal of rank-
ing higher valued user-item pairs above lower-scoring items
for the given user, but the model still has the same lin-
ear form. In a linear factorization both a given user and
a given item are assigned an m-dimensional vector of la-
tent features, where typically m is small, between ten and a
few hundred dimensions. To score each item one scores its
m dimensional “embedding” against the m-dimensional user
embedding, and orders the items by this score. This means
that the representation of the user has the same capacity as
the representation of a single item.

In this work we challenge the use of that common model-
ing approach as we believe a user should have a much richer
latent representation. Intuitively, the model of a user should
be able to encode that they may have many different tastes
concerning different items, whereas a single item represen-
tation only has to encode a single item. If the item set to be
recommended is a large, diverse set, we believe this limita-
tion will have a larger impact. For example, consider the set
of all products sold by an online store like Amazon. There
is likely only very weak correlation between the user’s tastes
in different product areas, e.g. between the movies they
might like, and the household products they wish to pur-
chase. Yet, the standard factorization models forces that all
these interests are encoded in the m latent factors, and di-
verse topics are forced to share these features. Even within a
more focused recommendation area, such as music or movies
the issue may be the same, for example a user’s interest in
history documentaries may have little correlation with their
interest in romantic comedies. One could argue that one can
simply increase the item embedding dimensionality to cap-
ture more interests in the user representation, but there are
reasons not to do this (both practical, and generalization-
based, especially for the long tail). Practically, the model
becomes larger in memory which can be an issue in pro-
duction. Secondly, as it is larger it would take longer to
train well, and may overfit as the item representations have
also become larger. We believe that employing a nonlinear-
ity and a higher capacity user model, and keeping the item
representation small, makes more sense as we will describe.

Our solution is to model a user with T latent vectors, each
of dimension m, that model the user’s latent tastes. Each
item still has a single m-dimensional latent feature vector.
The score between a user and a given item is the maximum
match between the user tastes and the given item. The re-



mainder of the paper is as follows. We first describe previous
work in Section 2. We then present our model in Section 3,
detailing the objective function and learning procedure to
train such a model by gradient descent. Experimental re-
sults on large scale recommendation tasks from Google Mu-
sic and YouTube are reported in Section 4. We finally sketch
some directions for future work in Section 5.

2. RELATED WORK
We have already talked about the most related linear fac-

torization models in the introduction, but the method we
propose in this work generalizes those to a nonlinear model.
Several types of nonlinear models have been tried before for
recommendation. The authors of [3] proposed a nonlinear
matrix factorization approach with Gaussian processes by
using a kernelized form for the model. They report very
good results on 1M MovieLens and EachMovie, however
their approach may have scalability issues for larger prob-
lems. The authors of [5] applied Restricted Boltzmann ma-
chines for collaborative filtering, which is a kind of neural
network that introduces nonlinearities via Gaussian hidden
units. They obtained results slightly better than SVD, and
an ensemble of the two methods performs very well. Our
method can also be considered to be a particular kind of
neural network, utilizing max nonlinearities rather than the
standard sigmoids, although it is quite different from that
of [5].

Other machine learning models consider max-based non-
linearities as we do, e.g. convolutional networks for image
tasks use max-pooling [4]. To the best of our knowledge,
however, they have not been used in latent models as in our
approach, and have similarly not been applied to recommen-
dation tasks.

Perhaps closest to our approach is the work of [1] where
multiple profiles for user modeling (micro-profiling) are used
for context-aware recommendation.

3. MAX INTEREST LATENT FACTORS
Standard linear user-item factorizations are of the form:

f(u, d) = U>
u Vd (1)

where u is the given user, u ∈ {1, . . . , |U|}, and d is an item
to be recommended, d ∈ {1, . . . , |D|}. The score assigned
for the given user and item, f(u, d) = Sud = U>

u Vd, can be
seen as the prediction of a missing element of the (full rank)
matrix S of dimension |U| × |D|, which is approximated by
the low rank factorization of S by U and V . The matrix U ,
which is of size m × |U|, encodes the latent factors for the
users, and a m × |D| matrix V encodes those of the items.
Hence, every user and every item has m latent factors.

The key idea of the proposed model is to define T interest
vectors per user, where the user part of the model is written
as Û which is an m × |U| × T tensor. Hence, we also write

Ûiu ∈ Rm as the m-dimensional vector that represents the
ith of T possible interests for user u. The item part of the
model is the same as in the classical user-item factorization
models, and is still denoted as a m×|D| matrix V . The new
scoring model is defined as:

f(u, d) = max
i=1,...,T

Û>
iuVd. (2)

For any given item, we are now computing T dot products,
rather than one, when comparing it to the user, and taking

Algorithm 1 MaxMF SGD algorithm.

Initialize model parameters (we use mean 0, standard
deviation 1√

m
), unless parameters are already initialized

during MapReduce (Algorithm 2).
repeat

For user u randomly pick a positive item d ∈ Du.
Compute f(u, d).
Set N = 0.
repeat

Pick a random item d̄ ∈ D \ Du.
N = N + 1.

until f(u, d̄) > f(u, d)− 1 or N ≥ |D \ Du|
if f(u, d̄) > f(u, d)− 1 then

Make a gradient step to minimize:

L
` |D\Du|

N

´
max(0, 1 + f(u, d̄)− f(u, d)).

(i.e. equations (3)-(6) for f(u, d) defined by (2)).
Project weights to enforce constraints, e.g. if ||Vi|| >
C then set Vi ← (CVi)/||Vi|| (and similar for U).

end if
until validation error does not improve.

the highest scoring. The intuition here is that the user is
modeled with T differing tastes and the item matches with
one of them best, captured via the max function. Said dif-
ferently, for each user, the set of items is partitioned into T
subsets, where the partitioning can vary across users. For
each partition a different scoring function is applied.

Algorithm 2 MaxMF MapReduce algorithm.

Initialize V randomly (mean 0, standard deviation 1√
m

).

Define model f1(u, d) = 1
|Du|

P
i∈Du

V >
i Vd.

Train f1(u, d) using Algorithm 1.

Define f2(u, d) = maxi Û>
iuV ∗

d , where V ∗ = V from f1.
for each user u (in parallel) do

Train Ûu, but keep V ∗ fixed, i.e. run Algorithm 1 but
only invoke the gradient updates (3)-(4) and not (5)-(6).

end for

Stochastic Gradient Descent Training.
Now that we have described the model, the next step is

to describe how to train it. We could learn such a model
using a regression (least squares) approach such as in SVD,
but in this work we focus on learning to rank as it has been
observed to perform well on several recommendation tasks
previously [6, 10]. Our starting point is the objective of
the linear factorization model, Wsabie [9], which learns the
model parameters by minimizing:X

u∈U

X
d∈D

X
d̄/∈Du

L
`
rankd(u)

´
max(0, 1 + f(u, d̄)− f(u, d)).

Here Du denotes the set of items that the user has pur-
chased / watched / listened to (depending on the context)
which we refer to as positive items, i.e. we are in a binary
rating setting rather than the real-valued rating setting e.g.
of the Netflix challenge. In fact, the binary setting is a very
common one in real-world problems, in our experience more
common than the rating-based one. In the absence of neg-
ative data, the above objective tries to rank all the positive
items as highly as possible. Here, rankd(u) is the rank of



the positive item d relative to all the negative items:

rankd(u) =
X

d̄/∈Du

I(f(u, d) ≥ 1 + f(u, d̄)),

and L(η) converts the rank to a weight. Choosing L(η) =
Cη for any positive constant C optimizes the mean rank,
whereas a weighting such as L(η) =

Pη
i=1 1/i optimizes the

top of the ranked list, as described in [7]. To train with
such an objective, stochastic gradient has previously been
employed. For speed the computation of rankd(u) is then
replaced with a sampled approximation: sample N items d̄
until a violation is found, i.e. max(0, 1+f(u, d̄)−f(u, d))) >
0 and then approximate the rank with |D \ Du|/N .

Although our model is nonlinear, we can still use almost
the same procedure as used for the linear model in [10], we
just need to compute the relevant gradients for our model.
Specifically, for a given triple (u, d, d̄), let us denote the max-

imum scoring user interest vector for d as Ûut and Ûut̄ for
d̄, where

∀j 6= t : Û>
tuVd > Û>

juVd, ∀j 6= t : Û>
t̄uVd > Û>

juVd̄.

For a violating triple we then need to update for the user
model:

Ûtu ← Ûtu + λL( |D\Du|
N

)Vd, (3)

Ût̄u ← Ût̄u − λL( |D\Du|
N

)Vd̄, (4)

and for the item model:

V̂d ← V̂d + λL( |D\Du|
N

)Ûut, (5)

V̂d̄ ← V̂d − λL( |D\Du|
N

)Ûut̄, (6)

where λ is the learning rate. At each step, one typically also
enforces that ||Uij || ≤ C and ||Vi|| ≤ C, for all i and j, as a
means of regularization.

The whole procedure is outlined in Algorithm 1, and is
scalable to medium-size datasets, where the model fits in
memory. Unfortunately, there is a major problem when the
dataset becomes large. For example if we would like to apply
this method to a dataset with 1 billion users (more than 1
billion unique users visit YouTube each month) and latent
dimension m = 64, this gives a model of size > 238GB (even
for T = 1). This is too big for most machines, and even if
it did fit, it might also be very slow to train. We therefore
consider a MapReduce-based training solution to deal with
this issue.

MapReduce Training.
Our solution to scale this algorithm is to consider an al-

ternating optimization: first optimize over the item embed-
dings V and then train the user embeddings U . In the first
phase where we train V , the user model U is unknown. One
option would be to initialize U to random values, however
V is unlikely to be trained well unless the process is iter-
ated enough to allow U to also converge (but similarly U
will be training with an impoverished V in early iterations).
Instead, in the first phase we build a model that factors out
U completely:

f1(u, d) =
1

|Du|
X

i∈Du

V >
i Vd.

i.e. we consider that Uu , 1
|Du|

P
i∈Du

Vi. Note that this

is reminiscent of the item-based embedding of the user em-

Table 1: Recommendation Datasets

Dataset Music: Artists Music: Tracks YouTube
Number of Items ≈75k ≈700k ≈500k
Train Users Millions
Test Users Tens of Thousands

Table 2: Google Music Artist Recommendation.
Our baseline model is Wsabie and mean rank
(Rank), precision at 1 and 10 (P@N) and recall at
1 and 10 (R@N) metrics are given relative to that
model. Decreases in rank and increases in R@N and
P@N indicate improvements.

Method Rank P@1 P@10 R@1 R@10
SVD +26% -7.9% -1.5% -6.7% -0.75%
Wsabie - - - - -
MaxMF T=3 -3.9% -3.1% -0.18% -4.4% -0.15%
MaxMF T=5 -8% -0.46% +1.3% -0.63% +1.9%
MaxMF T=10 -11% +0.33% +3.1% +0.33% +3.2%

Table 3: Google Music Track Recommendation
Method Rank P@1 R@1 P@10 R@10
Wsabie - - - - -
MaxMF T=2 -7.7% +10% +9.8% +12% +10%
MaxMF T=3 -12% +20% +20% +21% +20%
MaxMF T=5 -15% +24% +28% +26% +30%
MaxMF T=10 -17% +30% +33% +32% +34%

Table 4: YouTube Video Recommendation
Method Rank P@1 p@10 R@1 R@10
SVD +56% -54% -57% -54% -96%
Wsabie - - - - -
MaxMF T=2 -3.2% +8.8% +13% +9.9% +14%
MaxMF T=3 -6.2% +16% +18% +17% +19%
MaxMF T=5 -9% +22% +23% +23% +23%
MaxMF T=10 -11% +26% +26% +28% +26%

ployed in SVD++ [2]. We then train using the stochastic
gradient descent (SGD) approach of Algorithm 1 which is
now tractable, at least if the number of items is say less
than a few million. This gives us a good initialization for
the item embeddings V . In the second phase we fix V to V ∗

and train the user models only:

f2(u, d) = max
i,...,T

Û>
iuV ∗

d ,

This decouples the parameters for each user, allowing them
to be trained independently. We thus train all users in paral-
lel using MapReduce: the mappers collect and emit the rel-
evant training triples keyed by user, and the reducers train
each user independently without requiring a single machine
to have access to the entire model. The reducers can then
emit their Ūu vectors to save the entire model to disk for
further training iterations. I.e. one can then go back and
retrain V given fixed U and so on, although we only consid-
ered a two-phase setup in our experiments. In the two-phase
case we do not even need to save the user model to disk if
we are interested in batch offline predictions. We can both
train each user and perform the ranking of items in the re-
duce phase and output the recommendations to disk instead,
hence the user model is never actually stored.



4. EXPERIMENTS
We conducted experiments on three large scale, real world

tasks: music recommendation using proprietary data from
Google Music1, of both artists and individual tracks, and
video recommendation from YouTube2. In all cases, the
datasets consist of a large set of anonymized users, where
for each user there is a set of associated items based on
their watch/listen history. The user-item matrix is hence a
sparse binary matrix. The sizes of the datasets are given in
Table 1.

To construct evaluation data, we randomly selected 5 items
for testing per user, and kept them apart from training. At
prediction time, for the test users we then ranked all un-
rated items (i.e. items that they have not watched/listened
to that are present in the training set) and observe where
the 5 test items are in the ranked list of recommendations.
We then evaluate the following metrics: rank (the position
in the ranked list, averaged over all test items), precision at
1 and 10 (P@1 and P@10), and recall at 1 and 10 (R@1 and
R@10).

Hyperparameters (λ, C) were chosen using a portion of the
training set for validation, although for memory and speed
reasons we limited the embedding dimension to be m = 64.
As we trained our model, MaxMF (Max-nonlinearity Ma-
trix Factorization), with a ranking criteria, we consider our
baseline to be the same type of model, but without non-
linearity, which is the Wsabie model of [10]. So we used
the same λ and C that are optimal for Wsabie and then
report results for different values of T for MaxMF with
those settings, using the MapReduce based training scheme.
On Google Music Artist Recommendation and the YouTube
tasks we also compare to SVD (L2-optimal matrix factoriza-
tion for the complete matrix with log-odds weighting on the
columns, which downweights the importance of the popular
features, as that worked better than uniform weights). (For
YouTube, we trained the SVD on a (large) subset due to
scalabilty issues.) Note, however, that SVD was shown to
be inferior to Wsabie on several datasets previously [10].
Hence, as Wsabie is our main baseline, we report relative
changes in metrics when using other methods compared to
it. Results on the three datasets are given in Tables 2, 3 and
4.

The first dataset, Google Music artist recommendation
(Table 2), MaxMF gave only relatively small gains com-
pared to Wsabie. SVD performed worse in all metrics.
Note that a strongly performing model has a small mean
rank, and large precision and recall values, hence we are
looking for negative percentage changes in mean rank but
positive changes in the other metrics. SVD likely underper-
forms since we are measuring ranking based metrics, which
it does not optimize at training time. In other respects, the
models are very similar. For MaxMF, as we increased the
number of user interests T that we model, mean rank de-
creases from 3.9%, 8% and 11% compared to Wsabie, for
T = 3, T = 5 and T = 10 respectively. Changes in precision
and recall are smaller. We hypothesize that the relatively
small size of this dataset compared to the other two is the
reason why MaxMF has smaller gains.

The second dataset, Google Music track recommendation,
is comprised of the same set of anonymized users, but with

1http://music.google.com
2http://www.youtube.com

items represented at the track rather than the artist level.
That means there are more items to rank, ≈700k rather
than ≈75k, and correspondingly more items per user. This
means the task is harder, since there are more items to rank.
However, per user there are more items, which might mean
that training nonlinear interest models per user is less likely
to overfit, since there is more data for training. As is shown
in Table 3 we get considerable gains using our method on this
dataset compared to the Wsabie baseline, up to ≈30% gains
in precision and recall using T = 10 user interest vectors.

The third dataset, YouTube video recommendation, re-
quires us to rank 500k videos. As shown in Table 4 the
gains are also quite large, up to around 25% improvement
in recall and precision compared to the baseline model.

5. CONCLUSIONS
In this paper, we have introduced a highly scalable method

for learning a nonlinear latent factorization. Experiments on
three large scale, real-world datasets indicate the efficacy of
the approach.

Further work could try explore further algorithms, and to
analyse and understand these results further. For example,
we could explore whether we can learn the optimal number
of tastes T per user rather than leaving this parameter fixed.
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